
Overview of an Automated Framework to Measure
and Track the Quality Level of a Product

Mariana Falco
LIDTUA/CONICET

Facultad de Ingenierı́a, Universidad Austral
Pilar, Buenos Aires, Argentina

mfalco@austral.edu.ar

Ezequiel Scott
Institute of Computer Science

University of Tartu
Tartu, Estonia

ezequiel.scott@ut.ee

Gabriela Robiolo
LIDTUA

Facultad de Ingenierı́a, Universidad Austral
Pilar, Buenos Aires, Argentina

grobiolo@austral.edu.ar

Abstract—Product owners need to comprehend the product
quality level, in a synthetic and intuitive way to facilitate the de-
cision of accepting or rejecting the iteration. This article presents
the basis of an automated framework to measure and monitor
the quality level of a software product, within each iteration. This
framework is based on the Product Quality Evaluation Method
(PQEM), which was designed by the authors and it allows the
evaluation of the quality characteristics of a software product,
using the Goal-Question-Metric approach, the ISO/IEC 25010,
ISO/IEC 25023, the extension made of test coverage concept
to quality coverage applied to each quality characteristic, and
technical debt and waste. Within the automated framework, the
measurement is semi-automatic which is shown in the illustrative
example. The development of the framework will begin shortly,
and it is expected to carry on new measurements on new
iterations of an application.

Index Terms—quality attributes, quality characteristics, qual-
ity measurement, quality management, PQEM, automated frame-
work.

I. INTRODUCTION

Modern software development is straight away. Nowadays,
companies deploy new code into production weekly and even
daily. For example, Amazon unfolds new software every 11.7
seconds [1]. High-performing IT businesses deploy software
30 times more frequently with 200 times shorter lead times
[2]. With such fast release times and more frequent releases, it
is almost impossible not to see that the quality of software can
be impacted by pressure on the speed of releases, increasing
the number of defects in production.

Although some authors [2] point out that high-performing
companies tend to have fewer amounts of failure, there is
a need to understand that it is not correct to accelerate the
development while neglecting the fact that quality must be
in keeping with the objectives. The adverse impact of low-
level quality is much more significant in this changing world,
which means that measurement plays a fundamental role in
the development of effective and efficient software [3].

Quality plays a vital role in the software life cycle process,
and for that after each iteration, it is necessary to analyze
the quality level of that iteration before proceeding to the
next [4]; a task that it is not easy today. This is because

project managers and practitioners doesn’t have a synthetic
and intuitive way to quickly visualize the quality level of each
iteration, and the quality level of each product. Also, the only
real way to measure quality in a way that is systematic but
also economically feasible is to automate it [4].

Even though there are some manual and automatic ways of
analysing quality like SonarQube, there are no fully equipped
tools to measure a set of quality characteristics. Based on these
challenges, we present a framework which is the automated
version of Product Quality Evaluation Method (PQEM) [5],
which is a five-step method per iteration, whose main goal
is to perform a thoughtful quality assessment of the different
iterations within a software product, and that produces a single
value between 0 and 1 as the final outcome that represents the
product quality level.

This framework, as well as PQEM, is structured around
the Goal-Question-Metric approach [6], the set of quality
characteristics defined by the standard ISO/IEC 25010 [7], the
set of measures defined by the standard ISO/IEC 25023 [8],
the extension of coverage testing made by some of the authors
to achieve the measurement, and the definition of acceptance
criteria related to the expected quality level per each iteration.

Likewise, it includes technical debt and waste. In this
context, project managers and quality leaders will be able
to visualize the historical progresses for each iteration of
each product; as well as establishing a community that set,
define and create goals, questions and metrics. The framework
embedded the idea that a clear visual presentation often
improves understanding and increases the effectiveness of the
metrics [3]. It is worth mentioning that the framework has not
been developed yet, but this is what some of the authors are
carrying out nowadays.

The present article is structured as follows: in Section II, the
related work will be addressed, while Section III will describe
and characterize each of the steps within the Product Quality
Evaluation Method (PQEM). Section IV will delineate the
characteristics of the automation as a part of the framework,
while Section V will approach the illustrative example of the
application of PQEM to the second iteration of a mobile and
web. Section VI will address the discussion and threats to
validity, and finally, Section VII will describe the conclusions
and future work.978-1-7281-5957-7/20/$31.00 ©2020 IEEE

II. RELATED WORK

Quality plays a vital role in the software life cycle process,
and for that after each iteration, it is necessary to analyze
the result of that iteration before proceeding to the next [4].
PQEM is based on this idea, since it allows evaluating the
quality of the product in each iteration, comparing the quality
value obtained against the acceptance criteria defined for it.
It structures its base of quality characteristics through Goal-
Question-Metric, and allows summarizing by characteristic
and by iteration by extending the concept of testing coverage
[5]. In the same way, it is based on the standards ISO/IEC
25010 and ISO/IEC 25023. PQEM can be applied manually,
but in this article its extension is defined as an automatic
quality evaluation tool.

A manual approach was presented by Wingkvist et al. [9],
who seek to assess and assure the quality of technical doc-
umentation, building on the Goal-Question-Metric paradigm
and suggesting a metrics-based quality model. Quantitative
metrics are collected throughout production and use of the
technical documentation. Löwe et al. used VizzAnalyzer [10],
which is a software comprehension framework to asses the
quality of the documents. Apel et al. [11] presented the quality
assessment of the microservices, DevOps, and containerization
architectures by defining a large number of metrics. As in
PQEM, the approach address the following quality charac-
teristics: Portability, Maintainability, Performance Efficiency,
Functional Suitability, Reliability, Compatibility, and Security.

Mostly, automation is easily identifiable in testing as it
significantly reduces testing time and avoids repetitive tasks,
aiding in improving the quality of the software [12]. For
example, SonarQube1 allows for carrying out a continuous
code inspection to detect bugs and vulnerabilities in the
branches and pull requests of the project.

In this line, Shchramme et al. [13] have proposed a solution
to analyze and measure usability metrics during the imple-
mentation phase. Specifically, they have developed a frame-
work featuring code annotations that provides a systematic
evaluation of the usability throughout the source code. Their
framework can be applied under a role-based approach, where
different technical users can use the annotations to inspect
quality issues related to usability. The annotation processor
is in charge of automatically processing the annotations in
the code and calculate the metrics at compile time (i.e., with
no need to execute the code), providing numerical results for
the usability metrics, in terms of percentage values, according
to the calculations and optimal values specified in ISO/IEC
25023 [8].

Also, the literature addresses perspectives related to low
level measurements (product and process metrics) which are
used to predict and control higher level quality attributes.
Schrettner et al. [14] present an approach for modeling,
collecting, storing and evaluating such software measurements,
which can deal with all types of metrics collected at any stage
of the life cycle. They have developed the Unified Quality

1SonarQube web site – https://www.sonarqube.org/

Monitoring (UQM) application, which integrates the collection
of quality data, high level query management and reporting
features.

Mayr and others [15] have defined a quality model for
embedded systems, an approach for iteratively developing a
quality model for specific types of software, and support
for performing largely automated quality assessments of ES
source code. In this way, they addressed the operationalization
of the quality model regarding (semi-) automatic quality
assessments to get interpretative quality statements on higher
abstraction levels. This assessment model enables collecting
required measurement data, evaluating the collected data, and
aggregates these results according to the developed quality
model. Additionally, they adapted the open-source quality
analysis toolkit ConQAT [16] to cope with the requirements
that emerged from their assessment model.

It is worth mentioning that the Continuous Quality Assess-
ment Toolkit (ConQAT) provides the tool-support required to
enact continuous quality control in practice, by supporting
the rapid development of quality dashboards that integrate
diverse quality analysis methods and tools. Through advanced
aggregation and visualization mechanisms, these dashboards
enable developers and project managers to track key quality
aspects of software projects in an efficient and timely manner.

The dashboards are accompanied by a set of interactive
tools that support the in-depth inspection of identified quality
defects and help to prevent the introduction of further de-
ficiencies. Also, ConQAT is not limited to the analysis of
source code but takes into account various types of other
development artifacts like models or textual specifications
[16]. Finally, Tsuda et al. [17] have establish a SQuaRE-based
comprehensive software quality evaluation framework, called
Waseda Software Quality Framework (WSQF), which imple-
ments many product quality and quality-in-use measurement
methods originally defined in the SQuaRE series [18].

While automation tools exist, not all of them address a
comprehensive analysis of all quality characteristics or asso-
ciated metrics (whether they are defined by ISO/IEC 25023
[8] as well as new ones), nor do they calculate quality level
in a multidimensional aggregated number as it does PQEM.
Therefore, the automation of this method will serve as a means
of interface with what exists or what will be developed in the
future, complemented by the standards, in order to achieve a
comprehensive tool that will allow decisions to be made in
each iteration of a software product.

III. PRODUCT QUALITY EVALUATION METHOD

Product Quality Evaluation Method (PQEM) [5] is a five-
step method per iteration, whose main goal is to analyze, study,
measure and assess the quality level of the different iterations
within a software product, and that produces a single value
between 0 and 1 as the final outcome that represents the
product quality level. This is basically the degree to which
the software product fulfills its quality attribute requirements
[19].

PQEM is structured by the standard ISO/IEC 25010 [7],
which provides a basis to analyze a software product with
respect to the following set of quality characteristics: Func-
tional Suitability, Performance Efficiency, Compatibility, Us-
ability, Reliability, Security, Maintainability, and Portability;
and around the standard ISO/IEC 25023 [8] which defines
quality measures for quantitatively evaluating system and soft-
ware product quality in terms of the previous characteristics.
The five steps of PQEM are described in Table I.

TABLE I
THE FIVE STEPS OF PQEM

Step Description

1 Product setup
2 Elicitation of Quality Attributes Requirements
2 (a) Select quality characteristics and sub-characteristics
2 (b) Specify quality attributes requirements
2 (c) Define metrics of each quality attribute requirement
2 (d) Define acceptance criteria of each quality attribute require-

ment
3 Measure and test each quality attribute requirements
4 Collect and synthesize results
5 Assessment of the product quality level
5 (a) Collect measurement

The product setup is where the stakeholder defines the
amount of expected iterations of the software product, and the
definition of an acceptance criteria for the expected quality
level per iteration. PQEM is based on the Goal-Question-
Metric approach [6], a set of requirements, quality charac-
teristics and metrics to measure their fulfillment are elicited
for later aggregation.

The elicitation process of functional and non-functional
requirements which are identified as a Quality Attribute Re-
quirement (QAR), is followed by: a) the measurement itself,
b) the collection and synthesizing of the results that include
the implementation of the extension of the testing coverage
[20] as a quality coverage, and c) the final assessment of the
product quality level obtained. The synthesis of the results is
done by the equations shown in Table II.

As such, in Table II the labels are as follows: q identified
each quality characteristic, i identifies each iteration, n is
the number of quality characteristics defined, OCqi is the
obtained coverage per quality characteristic for each itera-
tion, NpQARqi is the number of passed QARs per quality
characteristic for each iteration, NQARqi is the number of
QARs per quality characteristic for each iteration, ECqi is
the expected coverage per quality characteristic per iteration,
TNQARi is the total number of QARs per iteration, OvCqi
is the overall coverage per quality characteristic per iteration,
TECi is the total expected coverage per iteration, and TOCi
is the total obtained coverage of QARs per iteration.

It is worth mentioning that the five steps described in Table
I are repeated for each iteration within the product life cycle.
Also, the PQEM method is semi-automated due to the fact that
each step can be done manually, while the measurement itself
can be done through the aid of software in order to reach the
coverage calculations and the quality level. This characteristic

TABLE II
EQUATIONS FOR THE QUALITY ASSESSMENT IN PQEM

Equation Calculation

OCqi
number-of-passed-QARqi

number-of-QARqi
=

NpQARqi

NQARqi
(1)

ECqi
number-of-QARqi

total-number-of-QARi
=

NQARqi

TNQARi
(2)

OvCqi
number-of-passed-QARqi
total-number-of-QARqi

=
NpQARqi

TNQARi
(3)

TECi
n∑

q=1

ECqi = 1 (4)

TOCi
n∑

q=1

OvCqi (5)

makes the method suitable to be applied in any software
development method that defines iterations, like most of the
agile methods. The model can also be applied to different
contexts within academia and industry, in which there is a
need to monitor and control the quality level of a product per
iteration.

IV. AUTOMATED QUALITY MEASUREMENT FRAMEWORK

The framework provides the stakeholders the possibility of
understanding and visualizing the evolution of the product
quality level through the life cycle of the product. The com-
ponents to be defined in PQEM, such as the metrics or the
catalogue selection, are for the user’s view, as if they were a
check list of what or not included for the quality analysis of the
project. One point must be clear: the framework is automated
and the measurement is semi-automated.

A. Standards: ISO/IEC 25010 and ISO/IEC 25023

The ISO/IEC 25000 known as SQuaRE (System and Soft-
ware Quality Requirements and Evaluation) is a family of
standards that aims to create a common framework for evalu-
ating the quality of software products. This family is made up
of five divisions: quality management, quality model, quality
measurement, quality requirements, and quality assessment
[18]. Within the quality model division, we used the ISO/IEC
25010 [7] which describes the quality model for the software
product and for the quality in use.

This standard presents the characteristics and sub-
characteristics of quality against which to evaluate the software
product. And also, the ISO/IEC 25023 [8] specifically defines
the metrics for measuring the quality of software products and
systems. ISO/IEC 25023:2016 defines quality measures for
quantitatively evaluating system and software product quality
in terms of characteristics and sub-characteristics defined in

ISO/IEC 25010 and is intended to be used together with
ISO/IEC 25010.

B. Technical debt and waste

Technical debt (TD) is defined as a metaphor that reflects
technical compromises that can yield short-term benefit but
may hurt the long-term health of a software system [21].
There is a need of more empirical studies on the application
of specific technical debt management (TDM) approaches in
industrial settings. Moreover, dedicated TDM tools are needed
for managing various types of technical debt in the whole
TDM process. Consequently, the PQEM tool incorporates
a level of technical debt management in order to analyze
for example, the following types of TD: requirements TD,
architectural TD, design TD, code TD, test TD, build TD,
documentation TD, infrastructure TD, versioning TD, and
defect TD. It is worth mentioning that this will be possible
by classifying each QRA that you obtain as a result of the
evaluation as ”not passed”.

Later on, and deriving from Lean development, it is feasible
to approach the concept of waste understanding it as that which
does not add value [22], and waste types can be interpreted
as those additional functions, changes of tasks, additional
processes, functionalities partially realized, movement, defects
and creativity of unused employees [23]. As such, waste is
measured from a ”trash can” where will be thrown away all
artifacts that are discarded per iteration, and within the same
trend graph it will be displayed the technical debt and waste
values.

C. API

The tool is able to integrate different automated tools that
measure quality attributes in order to obtain a full quality
analysis of each software product analyzed. For example, it
is possible to connect to SonarQube. This will lead to obtain
an interconnected quality platform, instead of individual ways
of measuring quality.

D. Catalogue

The PQEM tool will provide a catalogue of metrics applied
in the industry, in order to bring a complete list of ready-to-
apply metrics: containing a catalogue of metrics defined for
the quality characteristics that constitutes the ISO/IEC 25010,
a catalogue with the set of metrics defined by the ISO/IEC
25023 [8], a catalogue of goals, questions and metrics defined
for quality analysis and applied to industry, which were found
in a literature survey done by the authors but not yet published.
Also, it is possible to build a personal catalogue reusing
measures defined in other projects, and the others catalogues
described earlier.

E. Community and traceability

In this way, and with the creation of specific catalogues
or metrics, it will be possible to promote the generation of a
community that identifies the metrics used, the most common
and those necessary to add. Also, PQEM as a tool provides the

ability to visualize and compare the progress of each product
of a company, also making it possible to carry out historical
analyzes between products from the same company, giving a
particular perspective for developers by identifying points for
improvement and a global perspective for project leaders and
managers.

V. ILLUSTRATIVE EXAMPLE AND RESULTS

This section summarizes how the implementation of PQEM
resulted in the second iteration of a web and mobile appli-
cation, called HeartCare embedded in the health field. In this
way, HeartCare [5] ensure that the physical recovery of cardiac
patients who are part of a cardiac rehabilitation program can
take place in an environment outside hospitals.

PQEM gave a total quality level for the second iteration
of HeartCare a value of 0.90. It was previously defined with
stakeholders that the quality acceptance criterion for said
iteration was 0.70 (completing Step 1 in Table I). Within Step
2 the quality characteristics (as quality attributes requirements
or QARs), questions, metrics and acceptance criteria as well
as the results are stored in a structured artifact (spreadsheet),
as shown in Table III. The Result column contains the result
of the measurement made per row for all QARs (1 passed, 0
failed).

Based on the stakeholder needs, different quality charac-
teristics from ISO/IEC 25010 and ISO/IEC 25023 have been
selected. In order to fill the Result column in Fig. 1 (Table
I, Step 3), it was carried out an analysis of the HeartCare
implementation in order to indicate whether the question was
implemented or not, allowing later to explicit define a passed
or failed result. Each question may need to carry out tests
or counts to achieve an answer, for example to fill the row
with ID 17 shown in Table III, the incompatibility errors
within the web version, the mobile version and the sensor
were summarized. Only one compatibility error were found,
and so this QAR was set as passed. This same procedure was
performed for all the QARs.

Step 4 in Table I defines a set of equations that represent
an extension of the testing coverage, to calculate the coverage
of each QAR, which are defined in Table II.

The selected quality characteristics (abbreviated as QC
on Table IV) by the stakeholders were Availability, Fault-
Tolerance, Recoverability, Functional Suitability, Interoper-
ability, Modifiability, Performance Efficiency, Security, Us-
ability, and Portability. Following the Equations described in
Table II, we calculate the coverage value for Recoverability as
OCq2 =

NpQARq2

NQARq2
= 5

7 = 0.71. Since the acceptance criteria
for Recoverability was defined as 0.70; and according to Table
IV, the quality level TOC for the second iteration was 0.90.
So, we concluded that the product iteration is accepted as TOC
is bigger that the quality level previously defined.

When compared with the TOC value obtained for the pre-
vious iteration, the application reached the acceptance criteria
without an outstanding difference (only with 0.075) and with
a bigger technical debt (0.225) [21]. It is worth mentioning

TABLE III
ARTIFACT TO STORE DATA. EXAMPLE FOR FAULT-TOLERANCE.

ID Quality Characteristic Question Quality Measure Acceptance criteria Result

13 Fault-Tolerance Are the amount of crashes under control? Number of crashes Number <10 Passed
14 Fault-Tolerance Are the amount of hangs under control? Number of hangs Number <10 Passed
15 Fault-Tolerance Are the amount of incorrect functional re-

sponses under control?
Number of incorrect responses Number <15 Passed

16 Fault-Tolerance Are the amount of updates requiring restart
under control?

Number of updates requiring
restart under control

Number <4 Passed

17 Fault-Tolerance Are the amount of incompatibility errors
under control?

Number of incompatibility errors Number <4 Passed

TABLE IV
SUMMARY OF RESULTS FROM THE APPLICATION OF PQEM TO THE

SECOND ITERATION OF HEARTCARE

QC NQARq2 NpQARq2 OCq2 ECq2 OvCq2

Availability 12 10 1 0.086 0.086
Fault-Tolerance 5 5 1 0.02 0.02
Recoverability 7 5 0.71 0.03 0.02
Funct. Suitability 59 56 0.95 0.23 0.22
Interoperability 6 4 0.67 0.02 0.02
Modifiability 59 59 1.00 0.23 0.23
Performance Eff. 17 15 0.88 0.07 0.06
Security 19 13 0.68 0.07 0.05
Usability 64 58 0.91 0.25 0.22
Portability 10 8 0.80 0.04 0.03

Total 258 233 1.00 0.90

that in PQEM, TD is calculated as 1-TOC and for this second
iteration of HeartCare the TD value is 0.1.

The above describes the PQEM application in the second
iteration of a web and mobile application. The results obtained
serve as a means of testing not only for the method, but also
for understanding the points that need to be improved for the
next iteration of the HeartCare application.

VI. DISCUSSION

Implementing PQEM as a semi-automatic tool could bene-
fit developers in their everyday’s activities, especially those
that are related to software quality control. However, the
implementation of PQEM introduces several challenges. In the
following, we discuss what the main challenges are and a set
of proposals that aim to address those challenges.

The first steps of PQEM (see Table I) involve a set of
decisions, which are the most challenging to be automated.
In Step 2, the selection of the quality characteristics and
sub-characteristics, the definition of the Quality Attribute
Requirements (QARs), and the definition of the metrics along
with the QARs acceptance criteria are hard to automate
since these steps are subject to many constraints such as the
application domain, the business rules, the target users, and
even the technology used. In consequence, those decisions
should be made by stakeholders and be specified by them
as inputs of the tool. Although this intervention makes the
approach semi-automatic, a possible way to make easier these
decisions is to offer a set of predefined quality characteristics,
QARs, and acceptance criteria according to the characteristics

of the product or application domain. For example, one of
the predefined guidelines is formed by the set of quality
characteristics and metrics defined by the ISO/IEC 25013 [8].

Another challenge of adding automation to PQEM is the
definition of test cases that will be related to the QARs. Test
cases play an important role in PQEM since their results
impact directly on the obtained coverage (see Table I, Step 3).
In PQEM, test cases should be associated with the QARs, and
it can be possible to have test cases associated with more than
one QARs. Although the links between QARs and test cases
should be also defined by the stakeholders, several techniques
and tools can help in the automatic execution of the test cases
as well as the further collection, calculation, and synthesis of
the metrics.

Our proposal to (semi) automate PQEM is based on a tool
chain that includes several existing tools. The tool chain could
support the definition of test cases using different techniques,
in the context of the quality characteristics defined by ISO/IEC
25013 [8]. Figure 1 shows how a set of existing tools can work
together. First, developers (or any other stakeholder) have to
define the QARs and record them in a project management
tool such as JIRA2. In this sense, QARs can be treated as any
other issue in the issue-tracking system. It is worth mentioning
that QARs are a key part from the PQEM method, and so
the framework will endure the idea of providing an API to
integrate different tools as shown in the tool chain (see Figure
1) that measure those QARs in order to obtain a full quality
analysis of each software product analyzed.

In the next step, developers complete the implementation
of the QARs supported by development environments such as
Eclipse3 or IntelliJ IDEA4. Once the implementation phase is
completed, they send the updated source code by using rec-
ommended configuration management practices that include
version control (Git5) and build-automation (Gradle6) along
with a continuous integration server (Jenkins7).

These practices are already well-known software engineer-
ing practices that most of the companies apply nowadays and
they are essential to provide automation with PQEM. The CI

2Attlassian web site – https://www.atlassian.com/software/jira
3Eclipse web site – https://www.eclipse.org/
4Intellij IDEA web site – https://www.jetbrains.com/es-es/idea/
5Git web site – https://git-scm.com/
6Gradle web site – https://gradle.org/
7Jenkins web site– https://jenkins.io/

QARs : Project

management tool

Implementation

Version Control CI/CD

Maintainability: Code Quality

Correctness: Unit test

Portability: GUI scripting

Monitoring

PQEM Performance: load testing

Security: Vulnerabilities

Fig. 1. Tool chain to support PQEM integration.

platform will trigger the execution of the test cases related to
the QARs and it will also trigger the calculation of the metrics.
During the monitoring phase, the PQEM tool will collect all
the reports generated by the tool chain, calculate the metrics,
and synthesize the results (Table I, Step 4).

There are eight quality characteristics defined by IEEE:
Availability, Interoperability, Performance Efficiency, Security,
Usability, Modifiability, and Functional Suitability. From an
automatizing perspective, Functional Suitability is perhaps
the easiest quality characteristic to address; many tools have
been used for years to verify the correctness of the systems,
and these tools have shown to be stable and became well-
known by developers. Junit8 for Java, testunit9 for python are
just few examples of frameworks that support unit testing.
When these frameworks are used to verify the correctness
of a software project, the collection of metrics aligned to
the Functional Suitability results straightforward. In addition,
the correct setup and project configuration with tools such as
Gradle could make also simple the application of PQEM in
existing projects.

Although developers are usually responsible for designing
and writing test cases, there are tools that can automate this
process up to a certain degree. For example, Randoop10 is a
tool that can automatically generate hundreds of test cases by
applying feedback-directed random testing [26]. Little effort is
required by developers to create an adequate configuration for
testing the product with Randoop, making this tool suitable to
be integrated to the proposal.

In addition to the Functional Suitability, Maintainability
could also be partially automated by integrating tools such as
SonarQube11. For example, a set of predefined QARs related
to Maintainability could be automatically verified by the static
analysis performed by SonarQube. This tool gives flexibility
to define test rules that verify the maintainability of the
code and the presence of code smells. Similarly, SonarQube
provide a set of rules that determine whether the system

8JUnit framework website – https://junit.org/junit5/
9Test unit – https://github.com/test-unit/test-unit
10Randoop website – https://randoop.github.io/randoop/
11SonarQube web site – https://www.sonarqube.org/

under test has security vulnerabilities or not. This feature will
allow developers to also check another quality characteristic:
Security. These features make SonarQube a tool worth to be
used along with PQEM. Following this approach, tools like
Sikuli12 JMeter13 could be also used to cover QARs related to
quality characteristics such as Portability and Performance.

Despite being possible to automate the execution and col-
lection of metrics related to Functional Suitability, Maintain-
ability, Security, Portability, and Performance of the product,
providing automation for the rest of the quality characteristics
might be more challenging. Usability is particularly hard to
automate since it is mainly human-centric. Usability testing
requires to define first the type of users that the product is
targeting, and then, the usability scenarios that those users will
probably perform. Although several techniques can be used
for this purpose, nowadays there is a lack of tools that allow
for automatic usability testing. PQEM allows to calculate the
quality level of an Usability test by unifying the result per
each respondent into a single value per question, and a final
value for Usability.

Energy efficiency is important to make more sustainable
software; for this reason, researchers have studied the topic
from several perspectives. For example, CPU-intensive pro-
cessing in mobile devices has been studied by Rodriguez et
al. [24]. Anwar et al. [25] also studied energy efficiency in
Android apps and found that code smell refactorings positively
impact the energy consumption. In another study, the authors
pointed out the need to develop automated software analytics
tools that allow software practitioners to understand the re-
lationship between energy usage and other quality attributes
[27]. Although the definition of metrics and acceptance criteria
related to energy efficiency is a challenging task, we believe
that the proposed framework could include this support in the
near future. Furthermore, Interoperability and Modifiability
are also quality characteristics that could be challenging to
measure and more research is needed in this regard.

VII. CONCLUSION

In this article, we have presented an automatic framework
that provides a space for quality management of a software
product. It is based on PQEM [5], which allows measuring
the quality level of each iteration of a product. It should be
noted that the framework is automatic and the measurement
is semi-automatic, and in this context it is an automated tool
that will be developed throughout this year. But, it is viable to
mention that applications and validations of the PQEM method
have already been made.

In the same way, the framework allows to obtain a clear
idea of a quality management environment. So, in addition to
the development of the framework, the foundations are being
laid for making new measurements in the new iterations of
HeartCare in order to achieve having examples in several iter-
ations of the same product. Understanding what the framework

12Sikuli web site – http://sikulix.com//
13JMeter web site – https://jmeter.apache.org/

allows, we intend to integrate it with existing tools to provide
the user with a unified means of quality measurement.

In this context, it is expected to develop new research and
tools, in order to have a robust and complete framework useful
for any project leader, technical leaders and quality managers.
Also, the energy efficiency for CPU-intensive processing is an
important concern that is studied from several perspectives.
For example, they showed that using energy-aware job stealing
increases the energy efficiency of mobile computational Grids
because it increases the number of jobs that can be executed
using the same amount of energy [24].

ACKNOWLEDGMENT

Mariana Falco is supported by the National Scientific and
Technical Research Council (CONICET). Ezequiel Scott is
supported by the Estonian Center of Excellence in ICT re-
search (EXCITE), ERF project TK148 IT. Gabriela Robiolo
and Mariana Falco are supported by Engineering School,
Universidad Austral.

REFERENCES

[1] Altexsoft, (03 Nov, 2017), What Software Quality (Re-
ally) Is and the Metrics You Can Use to Measure It,
https://www.altexsoft.com/blog/engineering/what-software-quality-
really-is-and-the-metrics-you-can-use-to-measure-it/

[2] Puppets Lab. State of DevOps report 2015.
https://media.webteam.puppet.com/uploads/2019/11/2015-state-
of-devops-report.pdf? ga=2.207590612.619038807.1584477951-
277285324.1584477951

[3] S.H. Kan, Metrics and models in software quality engineering. Addison-
Wesley Longman Publishing Co., Inc, 2002.

[4] H.M. Sneed A. Merey, Automated Software Quality Assurance. IEEE
Transactions on Software Engineering, SE-11(9), 1985, pp. 909–916.
doi:10.1109/tse.1985.232548

[5] M. Falco and G. Robiolo, A Unique Value that Synthesizes the Quality
Level of a Product Architecture: Outcome of a Quality Attributes
Requirements Evaluation Method. In: Franch X., Männistö T., Martı́nez-
Fernández S. (eds) Product-Focused Software Process Improvement.
PROFES 2019. Lecture Notes in Computer Science, vol 11915. 2019,
Springer, Cham

[6] V. R. Basili, Software modeling and measurement: the
Goal/Question/Metric paradigm, 1992.

[7] ISO/IEC 25010, (s.f) https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010.

[8] Systems and software engineering — Systems and software Qual-
ity Requirements and Evaluation (SQuaRE), ISO/IEC 25023:2016,
https://www.iso.org/standard/35747.html

[9] A. Wingkvist, M. Ericsson, R. Lincke and W. Lowe, W. A metrics-based
approach to technical documentation quality. In 2010 Seventh Interna-
tional Conference on the Quality of Information and Communications
Technology, 2010, pp. 476-481, IEEE

[10] W. Löwe, M. Ericsson, J. Lundberg, T. Panas N. Pettersson,
Vizzanalyzer-a software comprehension framework. In Third Confer-
ence on Software Engineering Research and Practise in Sweden, Lund
University, Sweden, 2003.

[11] S. Apel, F. Hertrampf and S. Späthe, Towards a Metrics-Based Soft-
ware Quality Rating for a Microservice Architecture. In International
Conference on Innovations for Community Services, 2019, pp. 205-220,
Springer, Cham.

[12] D. R. Mohammad, S. Al-Momani, Y.M. Tashtoush M. AlsmiratA.
Comparative Analysis of Quality Assurance Automated Testing Tools
for Windows Mobile Applications. 2019 IEEE 9th Annual Comput-
ing and Communication Workshop and Conference (CCWC), 2019,
doi:10.1109/ccwc.2019.8666463

[13] M. Schramme J.A. Macı́as, Analysis and measurement of internal
usability metrics through code annotations. Software Quality Journal,
27(4), 2019, pp. 1505-1530.

[14] L. Schrettner, L.J. Fülöp, A. Kiss T. Gyimóthy. Software quality model
and framework with applications in industrial context. In 2012 16th
European Conference on Software Maintenance and Reengineering,
2012, pp. 453-456, IEEE.

[15] A. Mayr, R. Plösch, M. Kläs, C. Lampasona M. Saft, A compre-
hensive code-based quality model for embedded systems: systematic
development and validation by industrial projects. In 2012 IEEE 23rd
International Symposium on Software Reliability Engineering, 2012, pp.
281-290, IEEE.

[16] ConnQAT User Guide 2013.10, https://www.cqse.eu/download/conqat/conqat-
book-2013.10.pdf

[17] Tsuda, N., Washizaki, H., Honda, K., Nakai, H., Fukazawa, Y., Azuma,
M., Komiyama, T., Nakano, T., Suzuki, H., Morita, S. and Kojima, K.,
2019, May. Wsqf: Comprehensive software quality evaluation frame-
work and benchmark based on square. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP) (pp. 312-321). IEEE.

[18] The ISO/IEC 25000 series of standards,
https://iso25000.com/index.php/en/iso-25000-standards

[19] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[20] J.J. Chilenski and S.P. Miller. Applicability of modified condi-
tion/decision coverage to software testing. Software Engineering Journal,
9(5), 1994, pp. 193-200.

[21] Z. Li, P. Avgeriou P. Liang, A systematic mapping study on technical
debt and its management. Journal of Systems and Software, 101, 2015,
pp. 193-220.

[22] N. Oza, M. Ikonen, P. Kettunen and P. Abrahamsson, Exploring the
sources of waste in kanban software development projects. In Proceed-
ings of the 36th Conference on Software Engineering and Advanced
Applications (EUROMICRO ’10). 2010, pp. 376–381.

[23] K. Conboy X. Wang and O. Cawley.leagile software development: An
experience report analysis of the application of lean approaches in agile
software development. Journal of Systems and Software 85 (2012), pp.
1287–1299.

[24] J.M. Rodriguez, C. Mateos and A. Zunino, ”Energy-efficient job stealing
for CPU-intensive processing in mobile devices”, Computing 96.2, 2014,
pp. 87–117, https://doi.org/10.1007/s00607-012-0245-5

[25] Anwar, Hina, Dietmar Pfahl, and Satish N. Srirama. ”Evaluating the
Impact of Code Smell Refactoring on the Energy Consumption of
Android Applications.” 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2019.

[26] C. Pacheco and M.D. Ernst. Randoop: feedback-directed random testing
for Java. In Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion, pp.
815-816, 2007.

[27] Anwar, Hina, and Dietmar Pfahl. ”Towards greener software engineering
using software analytics: A systematic mapping.” 2017 43rd Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2017.

