
Using Developers’ Features to Estimate Story Points
Ezequiel Scott
University of Tartu

Tartu, Estonia
ezequiel.scott@ut.ee

Dietmar Pfahl
University of Tartu

Tartu, Estonia
dietmar.pfahl@ut.ee

ABSTRACT
Effort estimation is important to correctly plan the use of resources
in a software project. In agile projects, a correct effort estimation
helps decide which issues have to be fixed or finished during the
next iteration. However, estimating issues can be a complex task
and developers may make inaccurate estimates. Therefore, the use
of automatic approaches that aim to support developers in the
estimation process is worth to be studied. We explore the use of a
predictive model that use developers’ features to assign story points
to issue reports. The performance of the model is compared with
the performance of models based on features extracted from the
text of issues. We assessed the models with different performance
metrics including Accuracy, Mean Absolute Error, and Standardized
Accuracy. The preliminary results show that the model that uses
developers’ features sightly outperforms the models based on text
features, indicating a promising research direction.

KEYWORDS
Effort Estimation, Agile Software Development, Machine Learning

ACM Reference Format:
Ezequiel Scott and Dietmar Pfahl. 2018. Using Developers’ Features to Es-
timate Story Points. In ICSSP ’18: International Conference on the Software
and Systems Process 2018 (ICSSP ’18), May 26–27, 2018, Gothenburg, Sweden.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3202710.3203160

1 INTRODUCTION
Effort estimation is crucial in any development process to correctly
plan the use of resources. In particular, effort estimation plays
an important role in agile projects since they usually organize the
development in iterations which are defined by the teams according
to the stakeholders’ goals and the effort estimation. In agile, effort
estimation is often done by teams applying techniques such as
planning poker and made in terms of story points [5, 19].

Story points are a unit of measure for expressing an estimate of
the overall effort that will be required to fully implement a piece of
work [5, 17]. In practice, agile teams assign story points to not only
user stories but also other individual pieces of work that they must
complete. Project management tools usually name these pieces of
work as issue reports. Depending on how teams use these tools, an
issue could represent a user story, a bug report, a project task, or a
helpdesk ticket, among others.

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ICSSP ’18:
International Conference on the Software and Systems Process 2018 (ICSSP ’18), May
26–27, 2018, Gothenburg, Sweden, https://doi.org/10.1145/3202710.3203160.

The effort estimation process has been considered to be a pro-
cess in which developers’ expertise and previous knowledge have
a strong influence on estimation accuracy. Therefore, estimating
issues can be problematic for novice developers since they do not
have enough experience. As a result, novice developers –and some-
times even senior ones– guess the number of story points when
they have to estimate issues. In this context, the use of automatic
approaches that aim to support developers in the estimation process
is worth to be studied.

In order to aid developers during the estimation process, we
propose to use a predictive model whose output can be a suggestion
for novice developers or be considered as an extra input during
a planning poker session. To build the prediction model, we use
a supervised approach that takes as input features derived from
the issue reports of eight Open Source projects. We explore the
use of different sets of features and evaluate their performance to
determine the best one, including not only features from the textual
descriptions of the issue reports but also about the developers
who are involved. Using developer features such as reputation
and workload seems to be reasonable since we assume that the
estimation process is affected by the individual characteristics of
the developer.

To determine whether developer features have a positive effect
on prediction performance or not, we compare the results of sev-
eral models that are trained with a different set of features: a set
of developer features, set of text features, and a set given by the
combination of both. The comparison is made by using different
performance metrics such as Accuracy, Mean Absolute Error (MAE)
and Standardized Accuracy (SA). After analyzing the results, we
conclude that the models which use developer features to predict
story points outperform the models which use features extracted
from the text. These preliminary results indicate that further re-
search on the individual characteristics of the developer to predict
story points is worth to be done.

2 BACKGROUND
The traditional way of estimating effort is to give a date when a
task will be finished. This, however, does not account for the fact
that during the work a team member will attend meetings, read
e-mails and do other work-related activities. Therefore, story points
are often used as a proxy measure for both effort and complexity.
Typically, story points are assigned according to a Fibonacci number
sequence, where each number is the sum of the previous two [5].

There are techniques to estimate story points, such as planning
poker [5, 10]. In planning poker, a user story (or issue) is chosen to
be discussed. Then the developers individually choose the number
of story points. Once all team members have chosen their estimates,
the choices are disclosed. The developers, who chose the lowest and
the highest story points, must justify their choices. This process

https://doi.org/10.1145/3202710.3203160
https://doi.org/10.1145/3202710.3203160

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden Ezequiel Scott and Dietmar Pfahl

repeats until a consensus is achieved and the agreed number of
story points is assigned to the user story (or issue).

Nowadays, the story points and all other relevant information
about issues is managed using software tools. Among a wide range
of popular tools, JIRA1 is frequently used for tracking issues in
open source projects. An issue according to JIRA could represent a
software bug, a user story, or a custom type of issue. JIRA supports
many fields to describe issues such as summary, description, type,
status, priority, assignee, creator, among many others.

3 RELATEDWORK
A considerable amount of literature has been published on effort
estimation. Effort estimation is still attractive to researchers since a
reliable estimation process is crucial for a correct project planning
and a good management of the resources [15, 18].

Many studies have investigated the use of machine learning to
build predictive models in software engineering, aiming to predict
the time required for bug-fixing [1, 3, 11, 21] or the effort involved
in solving issues [4, 16, 20].

Other works have focused on agile contexts, usingmachine learn-
ing to estimate story points [4, 12]. These studies have compared
the performance of the classification task of different techniques
such as Neural Networks [2, 4] as well as traditional machine learn-
ing algorithms such as Naive Bayes, Decision Trees, K-NN, and
SVMs [12].

Porru et al. [12] studied the performance of a machine learning
classifier to estimate story points, using attributes from issue re-
ports. The authors extracted textual features from the description
of the issue reports as well as their components and issue type
fields. The main difference of our study consists in the introduction
of developers’ features to understand whether these features affect
the story point prediction or not.

To analyze the performance of the different models, several per-
formance measures have been proposed. Accuracy has been used
to analyze the quality of predictive models [7] as well as the Mean
Magnitude of Relative Error (MMRE) [2, 6, 12, 13]. However, sev-
eral studies [9, 13] have criticized the use of MMRE because of its
bias towards underestimation and its instability when comparing
different models. For this reason, the use of Mean Absolute Error
(MAE) [4, 12] and Standardized Accuracy (SA) [4] has recently
been recommended. In our study, we use Accuracy, MAE, and SA
to evaluate our predictive models.

4 RESEARCH QUESTIONS
In this study, we aim to answer the following research questions:

RQ1. Is the use of developer features suitable for estimating
story points of issue reports?

RQ2. What is the Accuracy of predicting story points using
developer features compared to using textual features?

RQ3. Does the use of developer features provide more accurate
estimates in terms of MAE and SA than using textual features?

To answer RQ1, we conducted a sanity check that consists in
comparing the performances of the prediction models with three
baseline benchmarks commonly used in the context of effort esti-
mation: Random Guessing, Mean Effort, and Median Effort [14, 15].
1Atlassian website – https://www.atlassian.com/software/jira

Random guessing chooses randomly a story point value from the
set of possible values and uses it as the estimate of the target issue.
Since Random guessing does not use any information associated
with the target issue, it would be expected that any useful estima-
tion model outperforms random guessing. The Mean and Median
Effort approaches use the mean and median story points of the
past issues as the estimate of the target issue. To answer RQ2, we
trained predictive models using Support Vector Machines (SVMs)
and different sets of features. SVM was selected since it has shown
the best performance for predicting story points in comparison
with other algorithms such as Decision Trees, k-NN, and Naive
Bayes [12]. Then, we compared the Accuracy of the models. To
answer RQ3, we followed a similar procedure than for RQ2. We
first trained the predictive models using different sets of features.
Then, we compared the performance of the effort estimation models
calculating the MAE and SA.

5 EXPERIMENTAL SETUP
This section describes the steps performed in order to build the
prediction models. The steps are based on the standard data mining
workflow [7]. Firstly, we describe the dataset used. Secondly, we
show the cleaning process that we apply to the dataset. Thirdly,
we describe the sets of features used to train the predictive mod-
els. Fourthly, we train the models using Support Vector Machines
(SVM) with different sets of features. These sets include developer
and textual features, as well as a combination of both. Finally, we
evaluate the results using different performance measures.

5.1 Dataset
The dataset consists of issue reports of eight open source projects.
This dataset has been used in several studies [4, 12] and is publicly
available. In addition, the dataset provides a wide range of possible
scenarios in terms of project domain, number of issues, and devel-
oper experience. The open source projects included in the dataset
are: Aptana Studio (APSTUD)2, a web development IDE; Dnn Plat-
form (DNN)3, a web content management system; Apache Mesos
(MESOS)4, a cluster manager; Mule (MULE)5, a lightweight Java-
based enterprise service bus and integration platform; Sonatype’s
Nexus (NEXUS)6, a repository manager for software artifacts re-
quired for development; Titanium SDK/CLI (TIMOB)7, an SDK and
a Node.js based command-line tool for managing, building, and
deploying Titanium projects; Appcelerator Studio (TISTUD)8, an
Integrated Development Environment (IDE); and Spring XD (XD)9,
a unified, distributed, and extensible system for data ingestion, real-
time analytics, batch processing, and data export. The total number
of issues in the dataset is 15155, ranging from 886 (APSTUD) to
3691 (XD). Regarding the type of issue reports, they are mainly
Bugs (6593) and User Stories (4062).

2Aptana Studio website – http://www.aptana.com/
3Dnn website – http://www.dnnsoftware.com/platform
4Apache Mesos website – http://mesos.apache.org/
5Mulesoft website – https://www.mulesoft.com/
6Nexus website – http://www.sonatype.org/nexus/
7Titanium website – https://jira.appcelerator.org/browse/TIMOB
8Appcelerator website –http://www.appcelerator.com/
9Spring XD website – http://projects.spring.io/spring-xd/

Using Developers’ Features to Estimate Story Points ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden

Table 1: Distribution of issue types and story points of the cleaned project dataset.

Issue types Story Point values

Story Improvement Bug Task Others Total Max Mean Median Min Std

APSTUD 37 (18.23%) 38 (18.72%) 110 (54.19%) 0 (0.0%) 18 (8.87%) 203 20 7.064 5 1 4.325
DNN 13 (5.42%) 48 (20.0%) 159 (66.25%) 7 (2.92%) 13 (5.42%) 240 8 2.117 2 1 1.137
MESOS 6 (1.63%) 96 (26.09%) 160 (43.48%) 81 (22.01%) 25 (6.79%) 368 13 2.546 2 1 1.712
MULE 7 (1.13%) 130 (21.04%) 313 (50.65%) 107 (17.31%) 61 (9.87%) 618 13 4.516 5 1 3.199
NEXUS 1 (0.3%) 56 (16.82%) 268 (80.48%) 8 (2.4%) 0 (0.0%) 333 3 0.964 1 0.5 0.571
TIMOB 59 (6.41%) 121 (13.15%) 657 (71.41%) 0 (0.0%) 83 (9.02%) 920 13 5.027 5 0.5 3.144
TISTUD 203 (17.31%) 198 (16.88%) 698 (59.51%) 0 (0.0%) 74 (6.31%) 1173 13 5.111 5 1 2.523
XD 164 (57.14%) 29 (10.1%) 86 (29.97%) 0 (0.0%) 8 (2.79%) 287 8 2.672 2 1 1.833

Total 490 (11.83%) 716 (17.29%) 2451 (59.17%) 203 (4.9%) 282 (6.81%) 4142 — — — — —

5.2 Cleaning Process
In real-world datasets, the data tend to be incomplete, noisy, and
inconsistent [7]. Since our dataset consists of data extracted from
real projects, we aim to correct their inconsistencies. To do that,
we keep only the issue reports that meet the following conditions:

• The issue report has been assigned to a developer.
• The story points of the issue report have been assigned only
once and never updated afterward. Those issues whose story
points get updated are considered as unstable and might
confuse the classifier [12].

• The issue has been addressed. An issue is addressed if its
status is set to closed and its resolution field is set to fixed.
Those issues that have not been addressed are likely to be
unstable and they might confuse the classifier.

• The fields summary and description have been set and their
values have not been changed after the initial set up.

• The story points have been assigned according to the Fi-
bonacci sequence (i.e. values 0.5, 1, 2, 3, 5, 8, 13, 20, 40) and
the number of instances with those values is greater than
one.

The original dataset contained 15155 issue reports from eight projects.
After applying the cleaning process, the dataset size decreased to
4142 issues. Table 1 describes the type of issues and the story points
of the cleaned dataset.

5.3 Features
We computed features based on the original set of attributes in the
dataset to help the classification task. These features are grouped
into two sets: developer features and textual features.

5.3.1 Developer Features. This set of features aims to describe
the individual characteristics of the developer.

• Reputation: Developer reputation has been used in several
studies [8, 22] as a way to characterize the role played by de-
velopers in software projects. The reputation of a developer
D is calculated as the ratio of the number of issue reports
in the dataset that have been both opened and fixed by the
developer to the number of issue reports opened by the de-
veloper plus one (Equation 1).

Reputation(D) = |opened(D) ∩ f ixed(D)|
|opened(D) + 1| (1)

• Current developer workload: This feature is determined by
the number of open issues that have been assigned to the
developer at a time.

• Total work capacity (number of issues): The total number
of issues that have been completed by the developer during
the project.

• Total work capacity (story points): The total number of story
points that have been completed by the developer during
the project.

• Number of developer comments: The total number of com-
ments that the developer has written in the project.

5.3.2 Text features. The textual features consist of several fea-
tures extracted from the summary and description fields of the
issues, written by the developers in natural language. The feature
extraction procedure is the same as used by Porru et. al [12].

• Context: The summary and description fields were joined
together in a new feature named context. Since developers
often include not only a description of the issue in natural
language but also code snippets to describe particular sit-
uations, the description in natural language and the code
snippet are analyzed separately. The reason for this is that
the language used in the blocks of code may have different
meanings from those found in the natural language descrip-
tions [12].

• Number of characters: Once we get the context of the issue,
we calculate the number of characters used in both corpora
(code and description).

• N-grams: We extracted features from both corpora using
Term Frequency - Inverse Document Frequency (TF-IDF).
Uni-grams and bi-grams are used as inputs to calculate TF-
IDF.

5.4 Predictive Models
The research goal of this study is to compare different predictive
models that produce a story point estimate for a given issue. Each
model takes as input a combination of the features defined in Section
5.3: developer and textual features.

ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden Ezequiel Scott and Dietmar Pfahl

The models are built using Support Vector Machines (SVMs),
since SVM have shown the best in result in the same domain [12].
When SVM is used for classification tasks, each training example is
marked to belong to one of two categories. The SVM model assigns
every new training example to one or the other category, so when
mapped, the two categories are separated by a gap. Since we have
more than two categories, many models must be used. To address
this issue, we use the scikit-learn10 python package that builds
many different models with two categories and combines them into
one model.

5.5 Validation and Evaluation
To validate the outcomes of the classifier, we use 10-fold cross-
validation. Cross-validation is a well-known technique to prevent
the classifier from over-fitting. In addition, we set the number of
folds to ten since it is more computationally feasible than using a
higher number of folds.

To evaluate the performance of the different models, we use three
metrics: Accuracy, Mean Absolute Error (MAE), and Standardized
Accuracy (SA). The Accuracy of a predictive model is simply defined
as the ratio between the number of correct estimates and the total
number of estimates. This measure has been used by many studies
and it is particularly useful to make straightforward comparisons
between the models and with related work.

Mean Absolute Error (MAE) has been recommended as a perfor-
mance measure by recent research [4, 14, 17]. The MAE is defined
by Equation 2, where y are the real story points assigned to an
issue, ŷ is the outcome given by an estimation model, and N the
total number of issues in the dataset. Since this measure evaluates
the error of the predictions, we can improve the performance of
the model by decreasing the MAE.

MAE =
1
N

N∑
i

|yi − ŷi | (2)

In addition, we evaluate the performance of the estimation mod-
els by using Standardized Accuracy (SA). The SA is based on the
MAE and the MAE of Random Guessing. The SA is defined by
Equation 3. Since this metric compares the predictions against the
random approach, we can improve the performance of the model
by increasing the SA.

SA =

(
1 − MAE

MAERandomGuess

)
∗ 100 (3)

6 RESULTS
In this Section, we describe and discuss the results for each of the
research questions.

RQ1. Is the use of developer features suitable for estimating story
points of issue reports The results obtained from the prediction
models are shown in Table 2. The columns show the values for the
three performance measures used: Accuracy, MAE, and SA. The
combinations of features are the following: a set of only developer
features (Dev), a set of features only extracted from the text (Text),
and a set consisting of both of the aforementioned sets (Text+Dev).

10Scikit-learn website – http://scikit-learn.org/stable/

In addition, Table 2 shows the results of using the three benchmark
baselines: Mean, Median, and Random approaches. The analysis of
the average values of the performance measures (last row of Table 2)
suggests that the estimations obtained using only developer features
are better than those achieved by using the standard baselines.

Using only developer features is suitable for estimating story
points since the model outperforms the baseline benchmarks.

RQ2. What is the Accuracy of predicting story points using devel-
oper features compared to using textual features? The results of the
predictions models that use different sets of features are shown in
Table 2. In particular, the first three data columns describe the accu-
racy of the models for all the projects in the dataset. The accuracy
of the model using only developer features (Dev) outperforms the
others in 5 of 8 projects. Averaging across all the project, their ac-
curacy is also higher than the model that uses only textual features
(Text) and a combination of both (Text+Dev).

A predictive model based on SVM and developers’ features can
achieve an accuracy of 0.384 on average, outperforming the
models based on textual features.
RQ3. Does the use of developer features provide more accurate

estimates in terms of MAE and SA than using textual features? The
values of MAE and SA for the predictive models using only the set
of developer features (Dev), textual features (Text), and both sets
combined (Text+Dev) are shown in Table 2. When comparing the
MAE values, using only developer features (Dev) gets the lowest
value on average across all the projects, although this value for the
Dev set is the lowest in 3 out of 8 projects. Similarly, the same set
of features (Dev) allows for obtaining the highest value of SA on
average across all the projects, although the SA value for the Dev
set is the highest in only in 3 out of 8 projects.

Using a SVM classifier and only developer features to predict
story points outperforms the values of MAE and SA achieved by
using textual features or a combination of textual and developers
features.

7 THREATS TO VALIDITY
There are threats to validity that should be carefully considered in
this research. We tried to mitigate threats to construct validity by
using a real-world dataset of issue reports from several open source
projects that have been used in related studies [4, 12]. To deal with
threats to conclusion validity, we compare the outcomes of the
predictive models using performance measures that are commonly
used according to the state of the art.

The used dataset was selected because it contains heterogeneous
data about a wide range of projects of different sizes, complexi-
ties, teams of developers and communities. The characteristics of
the dataset mitigate the threats to external validity. However, the
dataset consists of open source projects, which is not represen-
tative for all kinds of software projects, in particular for projects
conducted in commercial settings. Thus, further research is needed
to improve external validity.

In addition, there might be several confounding factors which
can influence the estimation process, such as company pressures,
previous background, education or expertise of the developers.

Using Developers’ Features to Estimate Story Points ICSSP ’18, May 26–27, 2018, Gothenburg, Sweden

Table 2: Evaluation results.

Accuracy MAE SA

Dev Text Text+Dev Median Random Dev Text Text+Dev Mean Median Random Dev Text Text+Dev Mean Median

APSTUD 0.288 0.297 0.290 0.276 0.089 3.074 3.483 3.374 3.484 3.453 6.495 52.673 46.378 48.047 46.364 46.834
DNN 0.437 0.410 0.421 0.438 0.142 0.704 0.771 0.754 0.753 0.700 5.760 87.776 86.618 86.908 86.920 87.848
MESOS 0.338 0.362 0.359 0.255 0.130 1.375 1.234 1.215 1.254 1.177 4.823 71.493 74.423 74.817 74.006 75.606
MULE 0.336 0.256 0.306 0.241 0.120 2.540 2.979 2.814 2.600 2.594 5.551 54.234 46.334 49.308 53.159 53.272
NEXUS 0.591 0.553 0.581 0.462 0.120 0.495 0.526 0.511 0.373 0.366 5.350 90.738 90.177 90.457 93.020 93.152
TIMOB 0.344 0.283 0.305 0.325 0.116 2.154 2.672 2.550 2.278 2.264 5.759 62.590 53.605 55.719 60.445 60.683
TISTUD 0.412 0.350 0.344 0.412 0.139 1.753 2.035 2.064 1.800 1.744 5.262 66.691 61.328 60.778 65.792 66.853
XD 0.329 0.356 0.355 0.226 0.115 1.502 1.509 1.533 1.412 1.334 5.118 70.660 70.524 70.048 72.417 73.928

Average 0.384 0.358 0.370 0.329 0.121 1.700 1.901 1.852 1.744 1.704 5.515 69.179 65.531 66.421 68.371 69.100

8 CONCLUSIONS AND FUTUREWORK
We explored the use of developers’ features to build predictive mod-
els that estimate story points in open source projects. We compared
the performance of several models using different sets of features.
The preliminary results show an improvement in Accuracy, MAE
and SA of the predictive models that use developer features over
the models that use features extracted from text.

Although the values of the three metrics are slightly better on
average across all the projects, there is no improvement when
we analyze the results of some projects individually. Using textual
features have shown a better accuracy in 3 out of 8 projects whereas
using the mean benchmark baseline gets better MAE and SA values
in 5 out of 8 projects. Therefore, the first thing to further investigate
is why these values are better in some projects than others.

When we analyze the results for each project, we can observe
that these values can range from 0.366 to 3.453 for MAE and from
46.334 to 93.152 for SA. Further research is needed to understand
these differences. Future work could assess the performance of the
same models through a cross-project evaluation.

As for the features used in the models, this preliminary study
shows that the model that uses developer features outperforms the
one that uses text features. It suggests that predictions might be
improved if new features related to the individual characteristics
of the developers are taken into account.

ACKNOWLEDGMENTS
The authors would like to thank Annika Laumets-Tättar for their
collaboration in this study. The work is supported by the institu-
tional research grant IUT20-55 of the Estonian Research Council as
well as the Estonian IT Center of Excellence (EXCITE).

REFERENCES
[1] W AbdelMoez, Mohamed Kholief, and Fayrouz M Elsalmy. 2013. Improving bug

fix-time prediction model by filtering out outliers. In Technological Advances
in Electrical, Electronics and Computer Engineering (TAEECE), 2013 International
Conference on. IEEE, 359–364.

[2] Pekka Abrahamsson, Raimund Moser, Witold Pedrycz, Alberto Sillitti, and Gian-
carlo Succi. 2007. Effort prediction in iterative software development processes–
Incremental versus global prediction models. In Empirical Software Engineering
and Measurement, 2007. ESEM 2007. IEEE, 344–353.

[3] Saïd Assar, Markus Borg, and Dietmar Pfahl. 2016. Using text clustering to predict
defect resolution time: a conceptual replication and an evaluation of prediction
accuracy. Empirical Software Engineering 21, 4 (2016), 1437–1475.

[4] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Thi Minh Pham,
Aditya Ghose, and Tim Menzies. 2016. A deep learning model for estimating
story points. IEEE Transactions on Software Engineering (2016).

[5] Mike Cohn. 2005. Agile estimating and planning. Pearson Education.
[6] Tron Foss, Erik Stensrud, Barbara Kitchenham, and Ingunn Myrtveit. 2003. A

Simulation Study of the Model Evaluation Criterion MMRE. IEEE Trans. Softw.
Eng. 29, 11 (Nov. 2003), 985–995.

[7] Jiawei Han, Jian Pei, and Micheline Kamber. 2011. Data mining: concepts and
techniques. Elsevier.

[8] Pieter Hooimeijer and Westley Weimer. 2007. Modeling bug report quality. In
Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering. ACM, 34–43.

[9] Barbara A Kitchenham, Lesley M Pickard, Stephen G. MacDonell, and Martin J.
Shepperd. 2001. What accuracy statistics really measure. IEEE Proceedings-
Software 148, 3 (2001), 81–85.

[10] Viljan Mahnič and Toma Hovelja. 2012. On Using Planning Poker for Estimating
User Stories. J. Syst. Softw. 85, 9 (Sept. 2012), 2086–2095.

[11] Dietmar Pfahl, Siim Karus, and Myroslava Stavnycha. 2016. Improving Expert
Prediction of Issue Resolution Time. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering (EASE ’16).
ACM, New York, NY, USA, Article 42, 6 pages.

[12] Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and
Roberto Tonelli. 2016. Estimating Story Points from Issue Reports. In Proceedings
of the The 12th International Conference on Predictive Models and Data Analytics
in Software Engineering (PROMISE 2016). ACM, New York, NY, USA, 2:1–2:10.

[13] Dan Port and Marcel Korte. 2008. Comparative Studies of the Model Evaluation
Criterions MMRE and Pred in Software Cost Estimation Research. In Proceed-
ings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM ’08). ACM, New York, NY, USA, 51–60.

[14] Federica Sarro, Alessio Petrozziello, and Mark Harman. 2016. Multi-objective
Software Effort Estimation. In Proceedings of the 38th International Conference on
Software Engineering (ICSE ’16). ACM, New York, NY, USA, 619–630.

[15] Martin Shepperd and Steve MacDonell. 2012. Evaluating prediction systems in
software project estimation. Information and Software Technology 54, 8 (2012),
820–827.

[16] Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair. 2006.
Software defect association mining and defect correction effort prediction. IEEE
Transactions on Software Engineering 32, 2 (2006), 69–82.

[17] Adam Trendowicz and Ross Jeffery. 2014. Software project effort estimation.
Foundations and Best Practice Guidelines for Success, Constructive Cost Model–
COCOMO pags (2014), 277–293.

[18] Muhammad Usman, Emilia Mendes, Francila Weidt, and Ricardo Britto. 2014.
Effort Estimation in Agile Software Development: A Systematic Literature Review.
In Proceedings of the 10th International Conference on Predictive Models in Software
Engineering (PROMISE ’14). ACM, New York, NY, USA, 82–91.

[19] VersionOne. 2017. 11th Annual State of Agile Survey. (2017).
https://explore.versionone.com/state-of-agile.

[20] Hui Zeng and David Rine. 2004. Estimation of software defects fix effort us-
ing neural networks. In Computer Software and Applications Conference, 2004.
COMPSAC 2004. Proceedings of the 28th Annual International, Vol. 2. IEEE, 20–21.

[21] Hongyu Zhang, Liang Gong, and Steve Versteeg. 2013. Predicting bug-fixing
time: an empirical study of commercial software projects. In Proceedings of the
2013 international conference on software engineering. IEEE Press, 1042–1051.

[22] Thomas Zimmermann, NachiappanNagappan, Philip J Guo, and BrendanMurphy.
2012. Characterizing and predicting which bugs get reopened. In Proceedings of
the 34th International Conference on Software Engineering. IEEE Press, 1074–1083.

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Research Questions
	5 Experimental Setup
	5.1 Dataset
	5.2 Cleaning Process
	5.3 Features
	5.4 Predictive Models
	5.5 Validation and Evaluation

	6 Results
	7 Threats to Validity
	8 Conclusions and Future Work
	Acknowledgments
	References

