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Abstract—Productivity in software development has been stud-
ied for a long time and is still a topic of interest. Many factors,
ranging from team size to music listened by developers, have
been studied regarding their effect on productivity. Surprisingly,
little is known about how the dynamics of open-source projects
that use agile practices are related to the productivity of the
developer teams. Our study aims to close this gap by analyzing
the productivity of open-source projects using measures that
are popular in the context of agile software development. To
do this, we collected data from seven open-source projects
and calculated both velocity and focus factor of teams per
iteration. First, we applied statistical process control to identify
iterations with out-of-control velocity and focus factor values.
Then, we studied these iterations regarding four context factors
that partly characterize the dynamics of open-source projects,
i.e., iteration length, turnover of developers who left, turnover
of new developers, and team stability index. Our results suggest
that high team stability and low turnover are strongly associated
with iterations showing high velocity.

Index Terms—Agile Software Development, Open Source, Pro-
ductivity, Turnover, Team Performance

I. INTRODUCTION

Productivity in software development has been studied
extensively. The first studies on productivity of software
development appeared in the *70s [1]]. The continuing interest
has led researchers to study a wide range of factors, such as
team size [2], developers’ capabilities [3], and even the music
listened by developers [4]]. New studies in the field are still
relevant since productivity factors are recommended to be re-
evaluated in modern software development contexts [5].

In today’s software projects, there is a predominant use of
agile practices, not only in proprietary industry projects but
also in open-source projects. Synergies between agile practices
and open-source project settings seem to be promising. One
may even regard the open-source approach as a variant in the
multifaceted agile development paradigm [6]. Not surprisingly,
the flexible and cooperative nature of open-source projects
accommodates fluctuations in the number of developers, af-
fecting the composition of teams. In other words, projects
may have changing teams with different developers over time
[7]]. Although the impact of turnover on productivity has been
studied previously [2]], [8]], little is known about productivity,
turnover, and team stability in the context of agile software
development in open-source projects.
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Fig. 1. Median number of developers of eight open-source projects.

Our study aims to close this gap by analyzing data collected
from JIRA server instances of seven open-source projects.
Our selection of projects is taken from a set of eight projects
initially compiled into a dataset by Porru et al. [9], and used in
further studies [[10]], since these projects are diverse and show
evidence of the use of agile practices. Figure [I] shows the
median number of developers (in blue) over time, as well as
the number of newcomers (in yellow) and leavers (in green),
across seven open-source projects. Time is expressed in terms
of iteration count. The fluctuations in the total number of
developers are due to difference of newcomers and leavers in
each iteration. To analyze the productivity of these projects,
we use software development measures as proxies. We choose
measures that are popular in agile software development
such as velocity and focus-factor [[11]], [[12]. Then, we apply
statistical process control techniques to identify the iterations
that report unusual (out-of-control) values of velocity and
focus factor. We studied these iterations regarding four factors
that characterize part of the open-source dynamics: iteration
length, turnover of developers who left (leavers), turnover of
new developers (newcomers), and the team stability index.

Our results show that iterations where velocity is below the
lower control limit have higher turnover and less team stability
than iterations where velocity is under control or above the
upper control limit.

II. RELATED WORK

Research on productivity in software development has a
long history. Wagner and Ruhe [If] point out that the topic



has been addressed during several decades and classify several
factors affecting productivity in software development. The
authors show that, although some findings in the early studies
are no longer relevant, several factors affecting productivity are
still relevant, i.e., factors such as project size, the programming
language, and developer experience.

Among the authors who studied factors affecting produc-
tivity, Sadowski and Zimmermann [|13|] report that it is worth
investing in proper team communication despite the increase in
team size. Moreover, activities and task switching [14], work
environment [[14]-[17]], developers’ capabilities and technical
factors [3]], and even the music listen by developers [4] have
been studied. Rodriguez et al. [2] studied the relationship
between team size and productivity based on data from the
ISBSG repository. While all of the mentioned studies use data
from different projects and domains, the the specific setting
of agile development in open-source projects have not been
taken into account. Petersen [5]] recommends that productivity
factors should be analyzed in varying contexts and, thus,
productivity factors should be re-evaluated.

In the context of agile software development, Fatema and
Sakib [[18] conducted a survey in several companies to identify
important productivity factors. Their study suggests that the
effectiveness of an agile team relies on multiple interrelated
factors such as excellent communication, leadership, adapt-
ability, motivation, and self-management. Dings@yr et al. [19]
studied productivity in agile teams as compared to teams
using non-agile development methods. They found in three
out of four studies that using agile methods results in higher
productivity of project teams. Downey and Shuterland [11]],
[20] introduced the idea of hyper-productive teams based on
measures such as velocity, one of the most popular and relevant
measures in agile software development [[12].

In summary, much effort has been spent on identifying
productivity factors in software development. However, little is
known about how the dynamics of open-source projects using
agile practices are related to the productivity of teams. Our
study aims to close this gap.

III. STUDY DESIGN

A. Research Objective and Research Questions

The research objective is to describe the productivity
reached by agile teams in open-source projects and to identify
the possible factors that explain unusual variations of produc-
tivity. We use two agile measures, velocity and focus factor,
as proxies for productivity [[11]]. In addition, we measure four
factors that characterize the dynamics of open-source projects.
These factors are our candidates for causes explaining unusual
productivity variation. The four factors are iteration length,
turnover of leavers, turnover of newcomers, and team stability
index. We formulate two research questions:

1) RQI: What contextual factors are related to iterations
whose velocity is out of control in open source projects?:
Motivation: Open-source projects have specific characteristics
that make these kind of projects different from others. For

example, the software built is commonly based on open collab-
oration, where new developers are continuously welcomed in,
and, in consequence, the team size and composition becomes
variable. The iteration length can also vary in open-source
settings because the projects are subject to constraints different
to those in other kinds of projects. For example, priorities and
pressures of marketing are different in open-source projects
[21]. In past studies, team size has been positively related
to productivity [1]], [2]. Turnover has also been related to
productivity since teams with more stable structures tend to
have better performance [21]. Optimal iteration length has
been a topic of debate. Some authors argue that it should
be variable [22] while others suggest having fixed-length
iterations (time-boxing) since teams benefit from stability [23]].

Having a better understanding of how context factors are
related to productivity in agile software development of open-
source projects can have relevant practical implications. For
example, if adding new collaborators decreases productivity,
then a recommendation could be that the number of new
collaborators in a project should be controlled.

Procedure: We first calculate the velocity of each project per
iteration. We normalize velocity by the number of developers,
giving us values in terms of velocity per developer (individual
velocity). Based on these values, we apply statistical process
control to determine which iterations have unusual variation.
Then, we classify the iterations of the projects into controlled
and out-of-control (exceptionally high and exceptionally low).
Finally, we analyze the context factors (iteration length,
turnover of leavers, turnover of newcomers, and team stability
index) across the groups to determine potential associations.

2) RQ2: What contextual factors are related to iterations
whose focus factor is out of control in open-source projects?:
Motivation: In RQI1, we investigate the relationship between
velocity and the context factors. However, velocity does not
reflect all the work that has been done during the iteration
since it considers only completed or approved work items [[1 1.
Therefore, we complement velocity with focus factor to get a
more comprehensive understanding of productivity.

Procedure: We first calculate the focus factor of each project
on an iteration basis. Based on the values of focus factor, we
classify the productivity of the iteration as out of control or
not. To do this, we apply statistical process control techniques.
Then, we analyze the relationship between the iterations that
had unusual variation of focus factor and the contextual
factors using descriptive statistics. Finally, we supported our
observations by using statistical analysis, as we did in RQ1.

B. Productivity Measures

1) Velocity: Velocity is the amount of work that is com-
pleted at the end of each iteration by a specific team, and it is
usually measured by adding the sizes of the completed product
backlog items in the iteration. Velocity is one of the most
popular and relevant measures due to its versatility of usage
[L1], [12], [24]. For example, it can be used for planning,
estimating work, measuring work done, and improving the
delivery of customer value. In this study, velocity (V;) is



calculated as the sum of story points of all completed issues
whose last status update was made within the iteration 7. We
consider an issue as completed if its status is set to “Done”,
”Resolved”, or "Closed”.

2) Work Capacity: Work capacity was introduced by
Downey and Sutherland [[11] to mitigate a drawback of using
velocity. Velocity is a measure that does not benefit from
partially completed work since it is concerned with the size
of what is delivered rather than the value of what is delivered
[24]. Therefore, work capacity ensures the measurement of all
the work reported during the sprint, whether it was marked
as completed or not [11]. In this study, work capacity (IW;) is
calculated as the sum of story points of all the issues that have
the last status update made within the iteration 7 regardless if
they were completed or not.

3) Focus Factor: Focus factor measures how focused the
team is towards achieving the iteration goal [I1], i.e., it
represents the extent to which the planned work was actually
done. Focus factor is calculated on an iteration basis. It is
defined as the ratio between velocity and work capacity, i.e.,
the focus factor (F;) of an iteration ¢ is defined by Eq.

Fi=— (D

C. Contextual Factors

As explained in Section we chose a set of contextual
factors that characterize part of the dynamics in open-source
projects and that have been found to have an effect on
productivity [[1], [2]], [13]], [25], [26]. These factors are iteration
length, turnover of leavers, turnover of newcomers, and team
stability index. More precisely, we define:

1) Iteration length: The duration of an iteration in days,
calculated as elapsed time between start and end dates of the
iteration.

2) Turnover rate (leavers): This measure is adopted from
[27]. Tt compares the number of developers who left the
team since the previous iteration to the average number of
developers. The turnover rate of iteration ¢ is calculated as
described by Eq. [2| D; is the set of active developers who
were assigned to at least one issue in iteration ¢. D;_; is
the set of developers who were assigned to at least one issue
in the previous iteration ¢ — 1. Note that we perform a sub-
traction operation between sets (not numbers). For example,
{a,b}—{a} equals {b} while {a}—{a, b} equals the empty set.
| D| represents the cardinality of set D. Using this notation, the
numerator |D;_; — D;| represents the number of developers
who left and the denominator W the average number
of developers in iterations ¢ and ¢ — 1.

|Di—1 — Dj
Turnovericqpers = D1 +1Di] 2
2

3) Turnover rate (newcomers): The turnover rate of new-
comers is the number of new developers who were active in
iteration ¢ and inactive in iteration ¢ — 1 divided by the average
number of developers during the iteration. The turnover rate

of newcomers at ¢ is calculated as shown in Eq. 3] Using
the aforementioned notation, the numerator |D; — D;_1| rep-
resents the number of new developers (newcomers), and the

. D;_ D;| .
expression % is the average number of developers.
|Di — D]
Turnover,cwcomers = [D;_1]+1D;] (3)
2

4) Team stability index (TSI): Impact of team stability on
performance has been investigated by Akgiin and Lynn [28]
based on a survey study. We aim to measure and quantitatively
analyze team stability. Inspired by the Requirements Stability
Index [29], we measure the stability of a team with regards
to its initial composition of developers. Thus, we divide the
sum of initial developers, newcomers, and leavers by the initial
number of developers. Following the notation proposed above,
Eq. @] shows the formula to calculate TSI;, where Dy is the
set of developers of the first iteration (¢ = 0). In our analyses,
we report the results of TSIfl, the inverse function of TSI,
since TSI™* gives us a value between 0 and 1 and, therefore,
is easier to interpret.

initial + newcomers + leavers

TSI = —
initial
|Do| 4 |Ds — Di—1| + |Di—1 — Ds|

= 4
| Dol ®

D. Process Behavior Analysis

To analyze the variation of productivity from one iteration
to another, we rely on Statistical Process Control (SPC)
techniques [30], [31]]. SPC proposes the use of control charts
to determine the operational limits for acceptable variation
in software processes. The use of these charts has shown
promising results in the context of software productivity, in
particular, to detect shifts in process performance [3].

We test the projects for stability by using Individuals and
Moving Range (I-MR) charts that establish the limits of
variation of process performance. By using I-MR charts, we
identify the points (iterations) where the process is out of
control, and we inspect these points in order to study possible
assignable causes responsible for that process instability. The
equations used to set up the I-MR chars are given by Eq. [3
where C'L indicates the center line, UC'L the upper control
limit, and LC'L the lower control limit. Z refers to the median
of each observation x;, MR; = |x; — x;_1| are the moving
ranges, MR is the median moving range, and D3, Dy, and
ds are the sample size-specific anti-biasing constants. In this
case, the values for our sample size are (D3 = 0; Dy = 3.267;
do = 1.128). We use the median instead of the mean because
the latter is more susceptible to the influence of outliers.

__MR

CLyr = MR CLlz =% (5)
= D3sMR MR
LCLyg = DsMR 1oL, — o 3MR

da



Values falling outside the control limits suggest that
assignable causes exist [30]. To inspect the potential causes,
we adopted the zone classification proposed by Florac et al.
[30] and classified the iterations according to its productivity
value (i.e., individual velocity or focus factor) as defined by

Eq. [

D+

zone(value) = ¢ D-

if value > UCL
if value < LCL (6)
N  otherwise

Once the iterations were labeled in zones, we analyzed the
contextual factors of the zones using descriptive statistics. We
did the analysis in two steps; first, we analyzed the projects
separately, and then all the projects together. At aggregated
level, we supported our observations by conducting non-
parametric statistical analysis based on Kruskal-Wallis H test,
followed by post-hoc tests to determine what groups (zones)
differ in their medians. The results are presented in Section [V}
where we reported the main findings along with their p-values.

E. Data Collection

We collected data from eight different open-source projects
using the popular JIRA issue trackerto manage their software
development. The dataset consist of issues, their change log,
and iteration dates extracted directly from the JIRA server
instances of the projects. The dataset includes the follow-
ing projects: Appcelerator Studio (APSTUD) , DNN Plat-
form (DNN), Apache Mesos (MESOS), MuleSoft (MULE),
NEXUS, Titanium SDK/CLI (TIMOB), Accelerator studio
(TISTUD), and Spring XD (XD) . All the projects are open-
source, their issue trackers are publicly accessible, and they
have been used in several related studies [9], [10]]. The projects
also evidence the application of different agile practices such
as the use of Epics and User Stories to manage requirements,
the use of Story Points to represent the size (or imposed
workload) of issues, and the use of specific fields to store
information about the iterations. Full details on these projects
are given in Appendix l]], Table

F. Data Cleaning

We applied several steps to pre-process and clean the
dataset. First, we fixed the missing starting dates of some
iterations. All projects have a field in which the information
about the iteration is stored. This information includes the start
and end dates. However, three projects (APSTUD, TIMOB,
TISTUD) have recorded only the end date of the iterations. In
these cases, we consider the start date of an iteration as the
day after the end date of the previous iteration.

After applying this fix, we removed all issues that had
incomplete information, such as issues having empty iteration
dates or story points. We also removed all the issues that
were assigned O story points, as we consider it as incorrect
information. We also removed all issues whose issue types
were not related to software development activities such as
“Documentation”, “"Wish”, ”New Feature”, “Patch Submis-
sion”, and “Technical Debt”.

After conducting the aforementioned steps, we calculated
the productivity measures and applied an additional cleaning
step in which we removed iterations that had null velocity or
work capacity. Keeping these iterations of apparent inactivity
would have introduced unnecessary noise into our subsequent
analyses.

Since the SPC technique that we applied relies on the
normality assumptions, we checked whether the values of
productivity (i.e., individual velocity and focus factor) are
normally distributed. Appendix E][I] gives more details about
this process. As a result, project DNN was removed from the
dataset since it does not fulfill the required prerequisite.

IV. RESULTS
A. Study Population

After cleaning, our resulting dataset consists of 7 projects
with 6887 issue reports and 387 iterations in total. The total
number of issues per project varies between 168 and 2102,
and the total number of iterations per project ranges from
22 to 93. In total, there are 198 unique developers in the
dataset, ranging from 9 to 65 unique developers per project.
The median duration of the projects is 831 days. Table [I|
summarizes these values.

TABLE I
DESCRIPTIVE STATISTICS OF THE CLEANED DATASET

Project Devs Issues Iterations Start End Duration
APSTUD 9 355 24 27.01.2012 17.01.2014 721
MESOS 65 1091 63 15.05.2014 11.05.2016 726
MULE 32 831 93 20.02.2013 12.05.2016 1176
NEXUS 16 612 63 12.09.2013 10.05.2016 970
TIMOB 30 168 22 03.12.2011 14.03.2014 831
TISTUD 15 1728 57 31.01.2012 24.04.2014 814
XD 31 2102 65 06.05.2013 26.02.2016 1025
Total 198 6887 387 - - 6263
Median 30 831 63 - - 831
Std 18.58 711.59 24.92 - - 168.81

Appendix @ Table shows the full details of the
descriptive statistics of the the contextual factors used, i.e.,
iteration length (days), turnover of leavers, turnover of new-
comers, and team stability index. One sees that the projects
have iteration lengths ranging from 3 to 56 days, with standard
deviations ranging from 1.50 to 11.70 days indicating that all
projects have changing iteration lengths over time. The largest
variation is shown by TIMOB and the smallest by MESOS.

Table also shows the descriptive statistics of the cal-
culated measures related to productivity, namely, velocity
(story points), work capacity (story points), focus factor, and
individual velocity (story points per person). Two projects
(NEXUS and TIMOB) show a low average velocity (between
8 and 18 story points) in comparison with the others, which
show average velocities around 100 story points. TISTUD has
the highest median velocity (130 story points) and MESOS
has several outliers that reach a maximum value of 800 story
points in one iteration. The projects show similar patterns in
the work capacity values since work capacity and velocity



are related measures. The projects are diverse in terms of
their team stability as shown by the values of TSI™'. Overall,
TISTUD is the most stable project, followed by APSTUD,
whereas TIMOB, followed by MULE, are the less stable ones.

B. Analysis Results

In this section, we present our results per research question.

1) RQI: Individual Velocity: To answer RQI1, turnover of
leavers, turnover of newcomers, iteration length, and TSI were
analyzed regarding the individual velocity. The analysis is
done for each project separately.

We set up I-charts for the individual velocity of each project.
Figure [2] depicts the I-charts, where the x-axis indicates the
iteration number and the y-axis the individual velocity. Five
out of seven projects (MESOS, MULE, NEXUS, TIMOB,
and XD) violate the normality assumption that is required to
apply SPC, so we applied a logarithmic transformation to the
individual velocity which led to a normal distribution in these
cases. In Figure [2] the dashed red lines indicate the control
limits (CL, UCL, and LCL), and the red dots highlight the
iterations that were above/below of the control limits.

We divided the iterations into groups according to their
corresponding zones (D+, D-, and N) and compared the values
of the contextual factors of the groups. Figure |3| shows the
boxplots for each factor grouped by zone. The results related to
individual velocity are on the left hand sides of each boxplot.
We observed the following patterns:

Turnover rate (leavers). The iterations with low individual
velocity (zone D-) show a higher turnover rate of leavers than
the iterations under control (zone N) and iterations with high
individual velocity (zone D+). This pattern occurs in 3 out
of 5 projects (APSTUD, MESOS, and XD) that had zone D-
iterations. Only one project (TIMOB) shows no differences
between the rate of zones N and D-. When taking all seven
projects together, the iterations in D+ zones show significantly
lower turnover rates than iterations in D- (p = .001) and N
zones (p = .009).

Turnover rate (newcomers). In five out of seven projects
(APSTUD, MESOS, MULE, TIMOB, and XD), the iterations
with low individual velocity (zone D-) show a higher turnover
rate of newcomers than iterations in N and D+ zones. This
observation is corroborated when the analysis is conducted
on all seven projects together, showing statistically significant
differences between zone D- and both zones N (p = .020)
and D+ (p = .058). The two projects that do not exhibit this
pattern (NEXUS and TISTUD) did not have any iterations
in zone D-. Regarding the comparison between the iterations
in zones D+ and N, there is no clearly observable pattern
since the turnover seems to be higher in N than D+ in three
projects (MESOS, MULE, and NEXUS), almost identical in
one project (XD), and lower in another project (APSTUD).
This is consistent with the results from the statistical analysis,
which indicates that there are no statistically significant dif-
ferences between the turnover rates of newcomers in the D+
and N zones (p = .414) when the data of the seven projects
is analyzed at aggregated level.

Iteration length. The iterations in zone D+ of three projects
(APSTUD, MULE, and XD) are larger than iterations in zone
D-. The remaining projects have low variation of iteration
length making it difficult to see differences between the zones.
However, when the projects are analyzed at aggregated level,
the statistical results show that iterations with high individual
velocity (zone D+) are significantly longer (p = .008) than
iterations with low individual velocity (zone D-).

Team stability index (TSI) In five out of seven projects
(APSTUD, MESOS, MULE, NEXUS, and XD), the iterations
with high individual velocity (zone D+) show a higher TSI~
than iterations in N. These differences are stronger in AP-
STUD and MULE. When analyzing all the projects together,
the iterations in zone D+ show significantly higher values of
TSI than the iterations under control (zone N) (p = .016)
and low velocity (zone D-) (p = .012). In addition, iterations
in zone D+ mostly remain in values close to 0.8, which
indicate stability in the team. Only XD shows a different
behaviour since it shows almost similar values of TSI in both
D+ and D- zones (TSI"! ~ .6).

2) RQ2: Focus factor: To answer RQ2, the chosen set of
contextual variables were analyzed regarding the focus factor.
As in RQI, the analysis is based on SPC and is done for each
project separately.

Figure [ depicts the I-charts for the variable focus factor,
where the x-axis indicates the iteration number and the y-
axis the focus factor. The dashed red lines indicate the control
limits (CL, UCL, and LCL), and the red dots highlight the
iterations outside of the control limits. We tested the distribu-
tion of the focus factor of each project, and the results indicate
that the focus factor is normally distributed; in consequence,
the projects satisfy the normality assumption that is required
to apply SPC.

We divided the iterations into groups according to the
observed values in the I-chart (zones D+, D-, and N). Then, we
compare the zones regarding the values of contextual factors.
Figure [3] shows the boxplots for each factor grouped by zone.
The results related to focus factor are on the right hand sides
of each boxplot. We observed the following patterns:

Turnover (leavers). In two projects (NEXUS and TIMOB),
there are slight differences in the turnover rate of leavers
between zones D+ and N iterations. However, the rest of
the projects show no evident differences. This observation
is supported by the results of the Kruskal-Wallis H test
(H = 1.27,p = 0.52), which indicates that there are no
significant differences in the medians of the turnover among
the zones.

Turnover (newcomers). Six out of seven projects (AP-
STUD, MESOS, MULE, NEXUS, TISTUD, and XD) have
iterations in zone N with a median turnover rate of new-
comers between 0 and .1. However, there are no significant
differences in the medians of the turnover among the zones
as it is supported by the results of the Kruskal-Wallis H test
(H =4.27,p=0.19).

Iteration length. The low variation in iteration length of
most of the projects makes it hard to identify differences.
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However, APSTUD and TISTUD show that the iterations
in zone D- are longer than the ones in N and D+. The
results from the statistical analysis at aggregated level show
that, according to the results of the Kruskal-Wallis H test
(H = 4.57,p = 0.10), the lengths of iterations in zone D-
(low focus factor) are significantly longer than in zone D+
(high focus factor).

Team stability index (TSI) There is no clear observable
pattern when TSI™' is analyzed for each project separately.
NEXUS and TIMOB seem to have lower values in zones D+
than in zone N while MESOS seems to have similar median
values in those zones. When D- and N zones are compared,

APSTUD shows larger values in zone D+ than in zone N while
TISTUD shows the opposite. This indicates that there are no
significant differences in the medians of TSI™! between zones.
This is supported by the results of the Kruskal-Wallis H test
(H =1.38,p = 0.50).

V. DISCUSSION
A. Interpretation of results

In our study, we collected data of two productivity measures,
i.e., (individual) velocity and focus factor, and analyzed how
outliers, i.e., data points in zone D- (under-performers) and in
zone D+ (over-performers), are associated with four context
factors, i.e., turnover (leavers), turnover (newcomers), iteration
length, and team stability (TSI™1).

Our study results indicate that iterations where velocity
was below the lower threshold in the control chart (zone
D-) are associated with a higher median turnover (leavers)
than those between control limits (zone N) and those in zone
N are associated with a higher turnover (leavers) than those
above the upper control limit (zone D+). The same pattern can
be observed for the association with context factor turnover
(newcomers). In addition, the association with team stability
points in exactly the same direction for each of the three zones,
i.e., the higher (TSI™!), the higher the velocity. Since team
stability can be considered an aggregate measure of the two
turnover measures, the consistency in the association patterns
are not surprising. We interpret the observed patterns as a clear
recommendation to control fluctuation in development teams
of open source projects, if high productivity is a goal.

When looking at the association patterns between the second
productivity measure, focus factor, our results suggest that
an above the upper control limit (zone D+) focus factor is
associated with high turnover (of both leavers and newcomers)
and low team stability while for iterations classified in zone
D- show the opposite association, and iterations between the
control limits (zone N) take the middle position. This is
somewhat surprising. A high focus factor indicates that many
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of the work items assigned to an iteration (work capacity)
are actually completed (velocity) when the iteration ends.
It is difficult understand why high team stability (and the
related context factors) is associated with high velocity but
low focus factor. Perhaps there exists some intrinsic motivation
for stable teams to work on as many work items as possible
(trusting that they manage to complete them) while less stable
teams are more focused on finishing up work instead of
starting to work on the next work item. However, speculation
might not be important when recalling that - different to
the results for velocity - our analysis did most of the time
not indicate statistically significant variation of the discussed
context factors with regards to the grouping of iterations based
on the measure focus factor.

The third context factor, iteration length, does not show
strong associations with any of the zones D+, N, and D- of pro-
ductivity measure velocity, and zones N and D+ of productivity
measure focus factor. Only iterations in zone D- of measure
focus factor seem to be associated with longer iterations.
Again, this is slightly counter-intuitive as one expects that
more available time gives more opportunity to finish up work
items that were planned for an iteration. It is possible, though,
that our way of calculation work capacity retrospectively is not
a fully correct conceptualization of the situation in open source
projects where iterations are not necessarily planned as strictly
as in closed source project within companies and, instead of
working on planned set of work items developers set out to
work any open issue at any time and when the observed time
span is longer there is a bigger chance to work on more items
(without finishing them up) as when the time span is shorter
and more discipline enforced.

B. Limitations

There are several limitations to be considered when inter-
preting the reported results. First, the study design follows a
data-driven approach that does not support causal inference.

Our results are mainly based on statistical analysis that,
although it allowed us to identify statistically significant rela-
tionships, these results are not proof of causality; controlled
experiments are required to prove causality, and this study can
set the basis for future controlled experiments.

The measures used in our study could introduce several
threats to construct validity. First of all, there is no general
agreement on how to measure productivity. We tried to mit-
igate this threat by choosing measures that are well-known
and often used in agile software development projects, such
as velocity which is understood as a proxy of productivity
[TT]l, [12]. In addition, the removal of iterations with velocity
or work capacity equal to zero could impact on the results
since such iterations could be interpreted as low-performance
iterations. However, we interpret iterations with no work done
or planned as cases that are hard to explain and would yield
misleading results if included. Finally, the formulas we used
for calculating turnover do not always accurately reflect the
team dynamics within iterations, especially for long iterations,
as changes might happen within an iteration. However, we
think that, overall, team changes within an iteration are rare
and thus ignoring them does not bias our results.

Another threat is related to the degree of agility applied by
the teams. We mitigated this threat by manually inspecting the
data and studying the information available from the official
websites of the projects. In particular, we manually analyzed
the issue description and summary fields to identify properly
formulated user stories (i.e., issues following the usual syntax
structure "As a [role], I want [feature] so that [benefit]” ),
the presence of epics, iterations, and story points. We took the
presence of these data items in the dataset as indicators agility.
Also, the team sizes are typical for agile projects.

The method used to identify iterations that were out of
control introduces another limitation. SPC is based on the
normality assumption, and the violation of this assumption



could threaten the validity of the results. We mitigated this
threat by applying data transformations. Our results show that
we cannot detect outliers easily if the distributions are not
normal. We applied a simple log transformation that allowed
us to determine outliers in lognormal distributions. It is worth
mentioning that if different underlying distributions are tested,
different transformation methods should be applied [32].

We addressed the reliability of this study by providing an
online and public repository{ﬂ where the dataset and scripts
are available. The scripts were made in interactive Jupyter
notebooks, where the results can be analyzed. This way, other
researchers can reproduce and replicate the current study.

Given the relatively small number of projects analyzed, we
cannot claim generalizability of our results to all open source
projects using the agile development paradigm.

VI. CONCLUSION

Productivity in software development is a topic that has been
extensively discussed, and it still worth to be studied. Analyz-
ing productivity is a challenging task since it depends on a
variety of factors as well as the specific development context.
In fact, factors that have been associated with productivity are
recommended to be evaluated in new contexts [5]]. This study
analyzed the productivity of seven agile software development
teams in open-source projects in order to determine factors of
importance. We used velocity and focus factor as proxies to
measure productivity in agile teams. In addition, we analyzed
productivity with regard to factors that are related to open-
source dynamics, namely turnover of leavers, turnover of new-
comers, team stability index, and iteration length. The analysis
was conducted on 6887 issues taken from seven different JIRA
projects. Our results suggest that high team stability and low
turnover are associated with iterations showing high velocity.
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