
An Empirical Study of User Story Quality and
its Impact on Open Source Project Performance

Ezequiel Scott, Tanel Tõemets, and Dietmar Pfahl

Institute of Computer Science, University of Tartu, Narva mnt 18, 51009 Tartu,
Estonia,

ezequiel.scott@ut.ee, tanel.toemets@gmail.com, dietmar.pfahl@ut.ee

Abstract. When software development teams apply Agile Software De-
velopment practices, they commonly express their requirements as User
Stories. We aim to study the quality of User Stories and its evolution over
time. Firstly, we develop a method to automatically monitor the quality
of User Stories. Secondly, we investigate the relationship between User
Story quality and project performance measures such as the number of
reported bugs and the occurrence of rework and delays. We measure
User Story quality with the help of a recently published quality frame-
work and tool, Automatic Quality User Story Artisan (AQUSA). For our
empirical work, we use six agile open source software projects. We apply
time series analysis and use the Windowed Time Lagged Cross Correla-
tion (WTLCC) method. Our results indicate that automatic User Story
quality monitoring is feasible and may result in various distinct dynamic
evolution patterns. In addition, we found the following relationship pat-
terns between User Story quality and the software development aspects.
A decrease/increase in User Story quality scores is associated with (i)
a decrease/increase of the number of bugs after 1-13 weeks in short-
medium projects, and 12 weeks in longer ones, (ii) an increase in rework
frequency after 18-28, 8-15, and 1-3 weeks for long, medium, and short
projects, respectively, and (iii) an increase in delayed issues after 7-20,
8-11, and 1-3 weeks for long, medium, and short duration projects.

Key words: User Story, Agile Software Development, Quality Assur-
ance, Time Series Analysis, AQUSA, QUS, WTLCC

1 Introduction

Correctly defining and understanding what a software system is supposed to do
is vital to any software project’s success. Poor quality of software requirements
has a severe effect on software projects success. It is widely known that require-
ment errors found in the later phase of the software development process cost
significantly more than faults found early, during the requirements engineering.
Low-quality requirements often cause the projects to exceed deadlines, increase
the amount of rework and product defects [1]. In addition, ensuring high-quality
requirements can be challenging as it is difficult to track and measure automat-
ically [2].

ezequiel.scott@ut.ee
tanel.toemets@gmail.com
dietmar.pfahl@ut.ee

2 Ezequiel Scott et al.

To minimize the risk of communication errors as a potential threat to project
success, requirements may be described using structured natural language (e.g.,
use case descriptions) or formal specifications. The downside of these methods
is their high definition and maintenance cost.

Agile Software Development (ASD) methods recommend writing require-
ments in the form of User Stories as a possible solution that helps to save time
by avoiding excessively detailed requirement documentation and to avoid that
the focus is taken away from the actual software development task [3].

User Stories describe requirements as short texts with a strict structure con-
sisting of three elements: (i) a desired function or property of the software, (ii)
the stakeholder who requires this function or property, (iii) and the benefit of
having this function or property. The most widely known template for writ-
ing User Stories was popularized by Mike Cohn [3] and proposes the following
syntax: “As a <role>, I want <goal>, [so that <benefit>]”.

The high interest in research on ASD [4] as well as the ever growing popularity
of ASD as the development method of choice among software developers has been
confirmed in several studies [5, 6]. Since User Stories were introduced, they have
become a popular method for capturing requirements in ASD projects [5, 7, 8],
because software developers find them effective and useful [9].

While User Stories have a well-defined structure, they are still written us-
ing natural language and, thus, their quality may vary. The consideration of
quality criteria, such as the INVEST criteria (independent, negotiable, valuable,
estimable, small, testable) seems to have a positive effect on software developers’
attitudes towards User Stories, as they believe that using User Stories increases
productivity and quality [10]. However, there exists little empirical evidence con-
firming the existence of such an effect in practice [9].

Our study aims to shed light on two research questions. Firstly, we analyze the
evolution of User Story quality over time for the purpose of monitoring. Secondly,
we investigate the relationships between User Story quality and characteristics
of the development process, i.e., rework and delay, as well as the product, i.e.,
software quality. We conduct an empirical study on the data collected from six
open-source software projects. To assess the quality of User Stories we apply
the Quality User Story (QUS) framework together with the Automatic Quality
User Story Artisan (AQUSA) open source software tool [11]. We are not only
interested in finding out whether there exists an effect of User Story quality on
process and product properties. We also try to find out whether it is possible to
predict with how much delay a change of User Story quality in one sprint has
an effect on process and product properties in later sprints. Our results indicate
that a decrease in User Story quality scores seems to be associated with an
increase of the number of bugs after 6 and 12 weeks in short and large projects,
respectively; an increase in rework frequency after 1 and 8 weeks in short and
large projects, respectively; and an increased number of delayed issues after 1
and 10 days in short and large projects, respectively.

The rest of our paper is structured as follows. In Section 2, we present related
work. In Section 3, we introduce the research questions and describe the research

Analyzing the Quality of User Stories 3

design of our study. In Section 4, we present the results. In Section 5, we discuss
our results and limitations of the study. In Section 6, we conclude the paper.

2 Related Work

2.1 Quality of User Stories

Several approaches exist for measuring the quality of User Stories. Literature
covering this field are quite recent which shows the growing interest of the topic
and its relevance in the current software engineering research. As stated in a
recent study by Lucassen et al. [9], proprietary guidelines or the application
of the INVEST criteria [10] are the most popular approaches used for assess-
ing User Stories. Buglione and Abran [12] point out that User Stories without
enough level of detail or incomplete User Stories can be the cause of incorrect
effort estimation. Therefore, they highlight the importance of applying INVEST
guidelines in order to reduce estimation error caused by low-quality User Stories.
While the INVEST characteristics seem to be comprehensive, they are difficult
to measure. Therefore, Lucassen et al. [11] developed the QUS framework sup-
ported by the AQUSA software. Since we used these instruments in our study,
more detail is provided when we describe our research design in Section 3.

Lai proposes the User Story Quality Measurement (USQM) model [13]. This
model is more complex than the INVEST model and organizes User Story quality
metrics in three layers. Layer “Discussable and Estimable Quality” consists of
“Clarity Contents”, “Low Complexity”, and “Modularity”. Layer “Controllable
and Manageable Quality” consists of “CM System”, “Version control tools”, and
“Cross-reference Table”. The third and last layer “Confirmable quality” consists
of “Assured Contents”, “Testability”, and “Verifiability”. Since there doesn’t
seem to exist tool support for automatic measurement of criteria in the USQM
model, the model is difficult to apply.

To solve issues originating from the fact that User Stories are written using
natural language, de Souza et al. [14] propose the use of domain ontologies. This
is expected to improve the quality of User Stories as it removes ambiguity. This
approach, however, has not yet been evaluated much in practice.

2.2 Empirical Studies on the Impact of Requirements Quality

Firesmith [1] described twelve requirement engineering problems and their causes
based on practical experience gathered while working with numerous real-life
projects. He states that an increase in the number of defects and delays can be
caused by numerous sub-problems, which in turn might root in problems like
poor requirement quality, requirements volatility, or an inadequate requirements
engineering process.

Rodŕıguez-Pérez et al. [15] studied the causes of bugs based on project data.
They propose a model that groups bugs into two categories, intrinsic and extrin-
sic bugs. Intrinsic bugs are introduced by changes in the source code. Extrinsic

4 Ezequiel Scott et al.

bugs are introduced by requirement changes or other issues not recorded in the
source code management system. The authors also state that an important limi-
tation of their model is that it does not cover bugs caused by faulty requirements
in the first place. Therefore, this model is not used in our study.

Sedano et al. [16] conducted a participant-observation study about waste
in software development. The authors observed eight projects and conducted
interviews with project team members. As a result, they established an empirical
waste taxonomy listing nine types of software waste. As a possible cause of rework
waste the authors identified requirement problems, more precisely User Stories
without concrete complete criteria or rejected User Stories.

Tamai et al. [17] examined 32 projects to explore the connection between
requirements quality and project success. A key finding was that requirements
specifications were poor in those projects where significant delays happened.

The creators of the QUS framework and AQUSA tool evaluated their frame-
work in a multi-case study involving three companies [11]. The purpose of the
study was to explore whether their framework and tool affects the work of soft-
ware developers positively. Thirty practitioners used the QUS framework and
AQUSA tool for two months. With the help of surveys and interviews, the au-
thors collected data for the following metrics at the start and during the case
study: User Story quality, perceived impact on work practice, amount of formal
communication, rework, pre-release defects, post-release defects, and team pro-
ductivity. The authors found that the quality of User Stories improved over time
after introduction of the QUS framework but they were not able to find clear
evidence about an effect on the other metrics. The authors conclude that more
data should be collected and they encourage others to conduct similar studies
to identify the effects of User Story quality on the software development process
and its outcomes.

2.3 Time Series Analysis in Software Engineering

Time series methods have been used for different purposes in software engi-
neering. For example, Jahanshahi et al. [18] conducted time series analysis with
the ARIMA (Auto Regressive Integrated Moving Average) model to predict the
number of anomalies in software. Kai et al. [19] describe the usage of time series
analysis for identifying normal network traffic behaviour. In a paper by Herraiz
et al. [20] time series analysis is used for forecasting the number of changes in
Eclipse projects. A recent paper by Choras et al. [21] explores the possibilities for
predicting software faults and software quality by using time series methods. In
their study, the authors compared the ARIMA, Random walk, and Holt-Winters
forecast models with ARIMA showing the best performance. The models were
tested with data on sprint backlog size, number of tasks in progress, and num-
ber of delayed tasks. Choras et al. also state that automated quality analysis is
important for managerial roles like team leaders and product owners as it helps
them make informed decisions regarding project timing, quality prediction, and
other important aspects. For the purpose of correlation analysis between time-

Analyzing the Quality of User Stories 5

series, the Windowed Time Lagged Cross Correlation (WTLCC) method [22]
has been proposed. This is the method we use in our study.

2.4 Summary

In summary it can be said that poor quality of requirements quality can be re-
lated to various issues such as increased number of defects, and excessive rework
and delay. As stated by Choras et al. [21], automated quality related analysis
is important for team leaders, product owners, and other similar roles for mon-
itoring the software development process and for making informed decisions.
Regarding User Stories various approaches have been used to improve and mea-
sure their quality but these approaches have not yet been applied on larger data
sets to forecast User Story quality for the purpose of monitoring. In addition,
the relationship between User Stories quality the amount of quality problems,
delays, and rework has not yet been studied extensively.

3 Study Design

An overview of our study design is shown in Figure 1. We start with acquiring
data from several publicly available JIRA server instances. The data is collected
from real-life open source ASD projects. In order to understand the data, a
significant amount of data exploration, data pre-processing and data cleaning
steps are applied to make the data ready for analysis. Once the dataset has been
cleaned, the User Stories are selected and their quality measured with the help
of the AQUSA tool. As a result, a list of defects related to the User Stories
is obtained and the quality score calculated based on those defects. We also
calculate the software development performance measures from the dataset, i.e.,
number of issues labeled as ”bug”, frequency of rework occurrence, and frequency
of delay occurrence. The quality scores and performance measures are captured
as time series and their correlations analyzed using Window Time Lag Cross
Correlation (WTLCC).

3.1 Research Questions

Our study tackles two research questions, RQ1 and RQ2. RQ1 focuses on ex-
ploring how the quality of User Stories changes over time and whether this can
be monitored automatically. RQ1 is formulated as follows:

RQ1: What dynamic patterns can be observed when applying automatic mea-
surement of User Story quality for the purpose of monitoring?

To answer RQ1, we rely on the QUS framework along with the AQUSA tool.
In order to express User Story quality with one number, we introduce a for-
mula that maps the data collected by the AQUSA to a rational number in the

6 Ezequiel Scott et al.

Data cleaning

Issue reportsAQUSA

Quality score
calculation Measures calculation

Correlation analysis
(WTLCC)

JIRA issue
trackers

Issue reports of
type "Story"

Defect report

Quality scores
issues reporting "bugs"
issues with rework
delayed issues

External tool process

Data process

All issue report types
+ changelog

Fig. 1. Conceptual scheme of the study design.

interval [0, 1]. With the automatic monitoring of User Story quality in place,
we study the relationship between User Story quality and three external quality
characteristics of open-source ASD projects, i.e., number of bugs (issues labeled
as ”Bug”), rework done (re-opened issues of all types), and delays (issues not
closed on due date). RQ2 is formulated as follows:

RQ2: What is the relationship between the quality of User Stories and other
aspects of software development? The aspects studied are number of bugs, rework
done (re-opened issues), and delays (based on due date).

Regarding the relationship between User Story quality and number of bugs,
we expect that poorly written User Stories affect the understanding of require-
ments negatively and, therefore, increase the number of bugs found in testing or
by end users. Similarly, we expect that poorly written User Stories increase the
amount of rework done and the number of delays.

To answer RQ2, time series data of User Story quality, number of bugs,
rework and delays is collected. In the rare case of missing values we use imputing
methods. For the correlation analysis, we apply the Windowed Time Lagged
Cross Correlation (WTLCC) method [22].

3.2 Initial Dataset

We collected data from open-source projects using JIRA, a popular software
development project management tool. Our initial dataset consisted of issue
reports and their change logs from ten open-source ASD projects. Of them, eight
projects had already been used in previous studies [23, 24, 25]. We identified two
additional projects for our study and collected the relevant data.

Analyzing the Quality of User Stories 7

Our initial dataset contained projects from different domains and with vari-
ance regarding the number of issues, developer experience, and development
period. The original dataset had more than 20K issue reports.

3.3 Data Cleaning

We applied several steps for cleaning the collected dataset. First, we kept issue
reports of type ”Story” for calculating the quality of user stories, issue reports of
type ”Bug” for calculating the number of bugs, and issue reports of type ”Task”
for calculating the occurrences of rework and delay. We only considered issue
reports in complete status, indicated by the tags ”Closed”, ”Done”, ”Resolved”,
and ”Complete”.

During the exploratory data analysis, we found that projects used different
Jira fields to store the textual description of a User Story. Some projects used the
field ”Summary” whereas others used the field ”Description”. After evaluating
several alternatives, we opted for keeping both fields and evaluated their quality
separately.

We applied several cleaning steps to remove the noise from the dataset and
avoid misleading conclusions. In total, we applied 16 cleaning steps including the
removal of duplicates, empty data, and the cleaning of textual descriptions by
removing hyperlinks, code snippets, among others. The complete list of cleaning
steps is given in Appendix 7. After the cleaning, we found that several projects
only have few user stories (less than 30) such as the projects MESOS, SLICE,
NEXUS, and MULE. We excluded these projects from the analysis since these
few data points can not reveal reliable patterns in the data. The resulting dataset
consits of six projects. Table 1 describes the projects (after cleaning) considered
in the analysis. We consider all projects as completed as the data was collected
more than one year after the latest observed activity (24 Aug 2018, project
COMPASS). Two of the projects, i.e., APSTUD and COMPASS have a relatively
short duration (313 and 338 days, respectively). Two other projects, i.e., TIMOB
and TISTUD, have a relatively long duration (1625 and 1295 days, respectively).
The projects DNN and XD are inbetween (869 and 726 days, respectively).

Table 1. Descriptive statistics of the projects in the dataset.

Project Stories Bugs Rework Delays
Quality Development period

Mean Std Min Max From To

APSTUD 151 329 160 87 0.90 0.04 0.67 0.92 08.06.2011 14.06.2012
COMPASS 98 427 13 319 0.96 0.05 0.83 1.00 20.09.2017 24.08.2018
DNN 250 1075 524 679 0.90 0.06 0.67 1.00 29.07.2013 15.12.2015
TIMOB 255 1052 399 160 0.88 0.04 0.75 0.92 22.11.2011 05.04.2016
TISTUD 525 1380 792 567 0.90 0.03 0.75 0.92 01.03.2011 21.07.2014
XD 2135 476 124 251 0.90 0.03 0.67 1.00 12.04.2013 30.11.2015

Total 3414 4739 2012 2063 – – – – – –
Median 252.5 764 279.50 285 0.90 0.04 0.71 0.96 – –
Mean 569 789.83 335.33 343.83 0.91 0.04 0.72 0.96 – –

8 Ezequiel Scott et al.

Several projects had inactive development periods at the start or end of
the project. We manually inspected the dataset regarding the number of issue
reports created and we kept only the issues created during the active development
periods.

3.4 Measurement

To study the variation of the quality of User Stories over time, we define a
measure that quantifies the quality. To study the correlation between user story
quality and project performance, we measure project performance by counting
the number of bugs reported, the number of occurrences of rework, and the
number of occurrences of delays to study.

Quality of User Stories (Q): For each issue tagged as ”Story” we calculated
the quality of the text contained in the fields ”Summary” or ”Description” based
on the defect report generated by the AQUSA Tool. The tool implements the
quality model QUS proposed by [11] and is publicly available1. The tool ana-
lyzes the descriptions of the User Stories and uses a linguistic parser to detect
violations. As a result, the AQUSA tool reports each violation as a defect along
with its type, i.e., kind and subkind, and its severity. There are three possible
severity values, i.e., high, medium, and minor, and 13 possible defects in total.
Table 2 shows the different types of defects that AQUSA can report.

Table 2. Possible defects from AQUSA

Kind Subkind Severity

well formed no means high
well formed no role high
unique identical high
minimal brackets high
minimal indicator repetition high
atomic conjunctions high

well formed content means medium
well formed content role medium
well formed no ends medium
uniform uniform medium

well formed no ends comma minor
well formed no means comma minor
minimal punctuation minor

We use a local instance of the AQUSA tool to process the user stories in our
dataset. Then, the report generated by AQUSA is processed to quantify the qual-
ity of each user story and get a numeric value between 0 and 1. The quality of a
user story Q is calculated as Q = 1−P , where P is a penalty value calculated as
a function of the number of defects and their severity. Equation 1 defines the for-
mula to calculate the quality score of a given user story, where fc is the percent-
age of defects of the user story in a category c ∈ C, C = {high,medium,minor},
1 AQUSA Tool repository – https://github.com/gglucass/AQUSA

https://github.com/gglucass/AQUSA

Analyzing the Quality of User Stories 9

and w′c is the normalized weight for category c. To assign weights that corre-
spond to the level of severity, we set w′ = (0.5, 0.33, 0.16) = (3

6 ,
2
6 ,

1
6) as a result

of using w = (3, 2, 1) for high, medium, minor severity, respectively. The total
number of defects possible in a severity category is 6 (high), 4 (medium), and 3
(minor), respectively.

Q = 1−P = 1−
∑
c∈C

w′cfc with w′c =
wc∑|C|
j=1 wj

and fc =
#defectsc

#total defectsc
(1)

Number of bugs (B): Count of the issue reports of a project where the
type is ”Bug” and the status is complete (e.g. ”Closed”, ”Done”, ”Resolved”, or
”Complete”).

Rework (R): Count of the issue reports of a project that were re-opened. To
calculate this, we analyze the log of changes of each issue. By default, JIRA
records every change made to the issues along with a timestamp in a changelog.
Therefore, if an issue was in status ”Reopened”, it is considered as rework.

Delays (D): Count of issue reports of a project that were completed after their
originally planned date. To calculate this, we compare the issue resolution date
with the end date of the sprint to which the issue was assigned to.

3.5 Data Analysis

We first create a time series representation for the quality of the user stories
Qp for each ASD project p in the dataset. We also create time series for bugs
(Bp), issues with rework (Rp), and delayed issues (Dp). For indexing the time
series, we use the issue creation date for user stories and bugs, the date when
the change was made for rework, and the issue resolution date for delays. The
data is re-sampled over 14 business days by using the mean and missing values
are imputed by interpolation.

RQ1: To study the evolution of the quality of user stories over time, we
present each time series Qp in a separate plot and we describe the evolution of
the quality by visual inspection.

RQ2: To study the relationship between the quality of the user stories Qp
and the variables of interest Bp, Rp, and Dp, we use Windowed Time Lag Cross-
correlation (WTLCC). WTLCC is a method that allows us to study the asso-
ciation between two time series, x(t) and y(t) with t = 1, 2, . . . , T , at different
time lags (τ) and temporal changes in that association along the sample period
[26, 27]. Thus, for a window size of W (W < T), a pair of windows Wx and
Wy can be selected for two data vectors x and y respectively, and the cross-
correlation between the windows (WTLCC) at time t for different time lags (τ)
is given by Eq. 2, where µ(Wx), µ(Wy), σ(Wx) and σ(Wy) are the means and
standard deviations of the windows Wx and Wy.

10 Ezequiel Scott et al.

rt(Wx,Wy, τ) =
1

W − τ

W−τ∑
i=1

(Wxi − µ(Wx))(Wyi+τ − µ(Wy)

σ(Wx)σ(Wy)
(2)

The calculation of WTLCC involves the selection of the window size. To the
best of our knowledge, there is no method to determine the window size and,
therefore, the window size must be determined based on theoretical considera-
tions or data characteristics. The window size also defines the desired level of
granularity during the analysis. We did a preliminary exploration of the results
using different window sizes such as monthly and quarterly time periods. We
finally opted for splitting the entire development period into four equally-sized
windows. This way, the resulting windows are easy to explain. The first window
(window 0) may correspond to the set up of the project, the next two windows
(window 1 and 2) represent the development phase where most of the features
are developed, and the last window (window 3) refers to the project finalization
phase.

The results are depicted using heatmaps, a visualization technique that helps
us with the inspection of the results at different time lags. We interpret the
correlation values (r) by following Cohen’s guidelines [28], where small, medium,
and large effect sizes are 0.1 ≤ r < 0.3, 0.3 ≤ r < 0.5, and 0.5 ≤ r, respectively.

When analyzing the heatmaps, we are mainly interested in high positive
or negative correlations with positive lags. In general, we expect a negative
correlation between user story quality and the variables of interest since we
assume that an increase (decrease) of user story quality results in a decrease
(increase) of the project performance (i.e., bug/rework/delay count) after some
lag time.

Positive correlations could be difficult to explain. Why would, for example,
an increase in user story quality correspond to an increase in the number of bugs
after some delay? A possible explanation could be that the work triggered by the
content of the user story is complex or difficult by nature and, thus, more prone
to bugs. Another reason could be a technical effect of the choice of window size.

It is also possible to find correlations with negative lags. For example, an
increase (decrease) of the number of bugs yields an increase (decrease) of user
story quality after some lag time (delayed positive correlation). This could indi-
cate that teams have improved the quality of their user stories as a consequence
of a previous increase in the number bugs. Or, in the reaction to less bugs, more
time is spent on creating more user stories less carefully. Additional analyses
would be needed to clarify this situations.

Finally, there is the possibility that, after some lag time, an increase (de-
crease) in bug count is followed by a decrease (increase) in user story quality
(delayed negative correlation). This could be interpreted, for example, as a sit-
uation where, due to an increasing number of bugs, more time has to be spent
on bug fixing and, thus, less time is available for writing proper user stories.
Conversely, less bugs (and therefore less rework effort) might give more time for
thinking about the requirements resulting in better user story quality.

Analyzing the Quality of User Stories 11

4 Results

4.1 Study Population

As presented in Table 1, our cleaned dataset contains six projects with 3414
user stories, 4739 bug reports, 2012 rework cases, and 2063 delays. The project
COMPASS has the smallest number of user stories and rework whereas APSTUD
has the smallest number of delays and bug reports. The project XD has the
largest number of user stories. Overall, the median number of user stories, bugs,
rework, and delays is 252, 764, 279, and 285, respectively.

Table 1 also shows the descriptive statistics of the quality of the user sto-
ries. Overall, TIMOB has the lowest quality values whereas COMPASS has the
highest. The projects XD, TISTUD, APSTUD, and DNN also have good qual-
ity values as their mean quality value is 0.9. The projects have a low standard
deviation value regarding their quality values (mean std = 0.04).

4.2 User Stories Quality Monitoring and Evolution Patterns

Figure 2 shows the evolution of the mean quality of user stories over time.
These graphs are useful to show how the quality of user stories can be used for
monitoring purposes. A quantitative measure of the quality of the user stories
of each project can be calculated by applying Equation 1 to the defect report
created by AQUSA tool. Although the quality values remain almost stable due
to the low standard deviation (see Table 1), it can be seen that the overall quality
values vary over time exhibiting different patterns.

Figure 2 shows that project XD is rather stable since it has low variance.
On the other hand, projects such as DNN and COMPASS exhibit an erratic
behavior. Moreover, both projects show a trend of decreasing user story quality
over time as it is shown by the regression line. The remaining projects indicate
a slight increase of user story quality over time as their regression lines have a
positive slope.

4.3 User Story Quality and Project Performance

Bug Count Figure 3 shows the results of applying WTLCC analysis to the
six projects. The heatmaps associate the quality of user stories with the number
of bugs. In each heatmap, the values on the y-axis represent the labels of the
four windows used in the analysis. The x-axis shows the lag in business days
that is applied before matching user story quality with the number of bugs. The
correlation values are represented by the color scale. The title shows the name
of the project along with the number of business days analyzed (n) on each case
since the correlation analysis requires that the series occur simultaneously and
in similar lengths.

12 Ezequiel Scott et al.

2013-05-01

2013-09-01

2014-01-01

2014-05-01

2014-09-01

2015-01-01

2015-05-01

2015-09-01

2016-01-01

Date

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

Q
ua

lit
y

XD

interpolation
observed
linear regression

2013-07-01

2013-10-01

2014-01-01

2014-04-01

2014-07-01

2014-10-01

2015-01-01

2015-04-01

2015-07-01

2015-10-01

2016-01-01

Date

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

Q
ua

lit
y

DNN

interpolation
observed
linear regression

2012-01-01

2012-07-01

2013-01-01

2013-07-01

2014-01-01

2014-07-01

2015-01-01

2015-07-01

2016-01-01

Date

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

Q
ua

lit
y

TIMOB

interpolation
observed
linear regression

2011-01-01

2011-05-01

2011-09-01

2012-01-01

2012-05-01

2012-09-01

2013-01-01

2013-05-01

2013-09-01

2014-01-01

2014-05-01

2014-09-01

Date

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

Q
ua

lit
y

TISTUD

interpolation
observed
linear regression

2017-11-01

2018-01-01

2018-03-01

2018-05-01

2018-07-01

2018-09-01

Date

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

Q
ua

lit
y

COMPASS

interpolation
observed
linear regression

2011-07-01

2011-09-01

2011-11-01

2012-01-01

2012-03-01

2012-05-01

2012-07-01

Date

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

Q
ua

lit
y

APSTUD

interpolation
observed
linear regression

Fig. 2. Evolution of quality of user stories over time. A linear interpolation method
was used to impute missing data points (red color).

-8
3

-7
3

-6
3

-5
3

-4
3

-3
3

-2
3

-1
3 -3 6 16 26 36 46 56 66 76

0
1

2
3

XD (n=673)

0.4

0.2

0.0

0.2

-7
7

-6
7

-5
7

-4
7

-3
7

-2
7

-1
7 -7 2 12 22 32 42 52 62 72

0
1

2
3

DNN (n=622)

0.3

0.2

0.1

0.0

0.1

0.2

-1
42

-1
25

-1
08 -9
1

-7
4

-5
7

-4
0

-2
3 -6 10 27 44 61 78 95 11
2

12
9

0
1

2
3

TIMOB (n=1141)

0.4

0.2

0.0

0.2

-1
06 -9
3

-8
0

-6
7

-5
4

-4
1

-2
8

-1
5 -2 10 23 36 49 62 75 88 10
1

0
1

2
3

TISTUD (n=852)

0.4

0.2

0.0

0.2

-2
9

-2
5

-2
1

-1
7

-1
3 -9 -5 -1 2 6 10 14 18 22 26

0
1

2
3

COMPASS (n=243)

0.2

0.0

0.2

0.4

-3
2

-2
8

-2
4

-2
0

-1
6

-1
2 -8 -4 0 3 7 11 15 19 23 27 31

0
1

2
3

APSTUD (n=267)

0.6

0.4

0.2

0.0

0.2

0.4

Fig. 3. Heatmaps representing the WTLCC results to compare the quality of user
stories with the number of bugs.

Negative correlations with positive lags. The highest negative correlation val-
ues with positives lags are in the range [−0.77,−0.26]. The highest values
are given by APSTUD (r = −0.77, window = 0, lag = 32), and TIMOB
(r = −0.55, window = 2, lag = 122) whereas the remaining projects have cor-
relations with medium effect XD (r = −0.44, window = 3, lag = 68), TISTUD
(r = −0.46, window = 3, lag = 89). The interpretation is that the positive
trend in user story quality pays off after 68 (XD), 89 (TISTUD), 122 (TIMOB)
business days in the form of a decrease in bug count.

Negative correlations with negative lags. Negative high correlations with neg-
ative lags are present in the following projects: XD (r = −0.33, window =

Analyzing the Quality of User Stories 13

1, lag = −75), DNN (r = −0.34, window = 1, lag = −43), TIMOB (r =
−0.30, window = 0, lag = −85), TISTUD (r = −0.47, window = 1, lag =
−60), COMPASS (r = −0.30, window = 1, lag = −13), APSTUD (r =
−0.31, window = 2, lag = −18). A negative correlation with negative lag could
indicate that an increase in the number of bugs creates more rework and, thus,
leaves less time for conducting proper requirements engineering, which decreases
the quality of user stories.

Positive correlations with negative lags. When looking at high positive correla-
tions with negative lags, the results shows correlations in the range [0.15, 0.27]:
XD (r = 0.22, window = 3, lag = −76), TISTUD (r = 0.24, window =
0, lag = −104), DNN (r = 0.15, window = 1, lag = −64), COMPASS (r =
0.24, window = 0, lag = −1), and APSTUD (r = 0.27, window = 0, lag = −11).
TIMOB does not show a relevant correlation (r = 0.09, window = 1, lag = −31).
This can be interpreted as follows: an increase in bug count results in an increase
in user story quality with a lag of 1 to 104 business days. Possibly, the increase
of user story quality was triggered as an attempt to stop a further increase in
bug count.

Positive correlations with positive lags. Positive high correlations with positive
are present in the following projects: XD (r = 0.21, window = 2, lag = 47),
DNN (r = 0.27, window = 0, lag = 19), TISTUD (r = 0.21, window =
2, lag = 21), COMPASS (r = 0.43, window = 1, lag = 22), and APSTUD
(r = 0.47, window = 3, lag = 22). This is difficult to interpret as it seems to
suggest that an increase in user story quality yields an increase of bug count
after 19 to 47 business days. We can speculate that other factors, e.g., increasing
complexity of the system under development, are responsible for the negative
effect on bug count. Only additional information could shed light on this.

Rework Count Figure 4 shows the results of the WTLCC analysis. In the
following, we present the relevant correlation values. Thse results can be inter-
preted as we presented in full detail for the correlation between user story quality
and bug count.

Negative correlations with negative lags. We found correlations in the range
[−0.69,−0.22] for the following projects. XD (r = −0.33, window = 1, lag =
−74), DNN (r = −0.54, window = 1, lag = −62), TIMOB (r = −0.22, window =
3, lag = −141), TISTUD (r = −0.40, window = 2, lag = −98), COMPASS
(r = −0.37, window = 2, lag = −13), and APSTUD (r = −0.69, window =
2, lag = −13).

Negative correlations with positive lags. These type of correlations are present
in 4 out of 6 projects, in the range [−0.40,−0.51]: XD (r = −0.50, window =
3, lag = 41), TIMOB (r = −0.51, window = 2, lag = 134), TISTUD (r =
−0.42, window = 3, lag = 96), COMPASS (r = −0.40, window = 3, lag = 5).

14 Ezequiel Scott et al.

-8
2

-7
2

-6
2

-5
2

-4
2

-3
2

-2
2

-1
2 -2 7 17 27 37 47 57 67 77

0
1

2
3

XD (n=661)

0.4

0.2

0.0

0.2

-7
7

-6
7

-5
7

-4
7

-3
7

-2
7

-1
7 -7 2 12 22 32 42 52 62 72

0
1

2
3

DNN (n=622)

0.4

0.2

0.0

0.2

-1
42

-1
25

-1
08 -9
1

-7
4

-5
7

-4
0

-2
3 -6 10 27 44 61 78 95 11
2

12
9

0
1

2
3

TIMOB (n=1141)

0.4

0.2

0.0

0.2

-1
07 -9
4

-8
1

-6
8

-5
5

-4
2

-2
9

-1
6 -3 9 22 35 48 61 74 87 10
0

0
1

2
3

TISTUD (n=866)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

-27-23-19-15-11 -7 -3 0 4 8 12 16 20 24

0
1

2
3

COMPASS (n=221)

0.4

0.2

0.0

0.2

-2
8

-2
4

-2
0

-1
6

-1
2 -8 -4 0 3 7 11 15 19 23 27

0
1

2
3

APSTUD (n=235)

0.6

0.4

0.2

0.0

0.2

0.4

Fig. 4. Heatmaps showing the WTLCC results to compare the quality of user stories
with the number of issues with rework done.

Positive correlations with negative lags. We found correlations in the range
[0.22, 0.44] for the following projects: XD (r = 0.22, window = 1, lag = −6),
DNN (r = 0.33, window = 3, lag = −77), TIMOB (r = 0.27, window =
0, lag = −43), TISTUD (r = 0.25, window = 3, lag = −85), and APSTUD
(r = 0.44, window = 2, lag = −27)

Positive correlations with positive lags. We found correlations in the range
[0.22, 0.31] for the following projects: XD (r = 0.24, window = 0, lag = 72), DNN
(r = 0.25, window = 2, lag = 2), TISTUD (r = 0.22, window = 2, lag = 102),
COMPASS (r = 0.31, window = 2, lag = 5), and APSTUD (r = 0.26, window =
0, lag = 23).

Delay Count Figure 5 shows the results of the WTLCC analysis regarding
delay count. We present the relevant correlation values. These results can be
interpreted as we presented in full detail for the correlation between user story
quality and bug count.

Negative correlations with negative lags. We found correlations in the range
[−0.73,−0.16] for the following projects. XD (r = −0.38, window = 2, lag =
−76), DNN (r = −0.73, window = 1, lag = −28), TIMOB (r = −0.16, window =
3, lag = −83), TISTUD (r = −0.47, window = 0, lag = −50), COMPASS
(r = −0.45, window = 3, lag = −10), and APSTUD (r = −0.69, window =
3, lag = −6)

Negative correlations with positive lags. These type of correlations are present
in 5 out of 6 projects, in the range [−0.83,−0.37]: XD (r = −0.41, window =
0, lag = 48), TIMOB (r = −0.37, window = 2, lag = 100), TISTUD (r =
−0.49, window = 1, lag = 53), COMPASS (r = −0.83, window = 2, lag = 8),
and APSTUD (r = −0.47, window = 2, lag = 2)

Analyzing the Quality of User Stories 15

-8
3

-7
3

-6
3

-5
3

-4
3

-3
3

-2
3

-1
3 -3 6 16 26 36 46 56 66 76

0
1

2
3

XD (n=674)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

-7
5

-6
6

-5
7

-4
8

-3
9

-3
0

-2
1

-1
2 -3 5 14 23 32 41 50 59 68

0
1

2
3

DNN (n=610)

0.6

0.4

0.2

0.0

0.2

0.4

-1
13 -9
9

-8
5

-7
1

-5
7

-4
3

-2
9

-1
5 -1 12 26 40 54 68 82 96 11
0

0
1

2
3

TIMOB (n=912)

0.3

0.2

0.1

0.0

0.1

0.2

-7
7

-6
7

-5
7

-4
7

-3
7

-2
7

-1
7 -7 2 12 22 32 42 52 62 72

0
1

2
3

TISTUD (n=627)

0.4

0.2

0.0

0.2

-12-10 -8 -6 -4 -2 0 1 3 5 7 9 11

0
1

2
3

COMPASS (n=102)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

-12-10 -8 -6 -4 -2 0 1 3 5 7 9 11

0
1

2
3

APSTUD (n=100)

0.6

0.4

0.2

0.0

0.2

0.4

Fig. 5. Heatmaps showing the WTLCC results to compare the quality of user stories
with the number of issues with delays.

Positive correlations with negative lags. We found relevant correlations in the
range [0.14, 0.24] for the following projects: XD (r = 0.24, window = 1, lag =
−59), DNN (r = 0.22, window = 2, lag = −6), TIMOB (r = 0.28, window =
0, lag = −31), TISTUD (r = 0.24, window = 2, lag = −58), COMPASS (r =
0.49, window = 1, lag = −13), APSTUD (r = 0.14, window = 1, lag = −7).

Positive correlations with positive lags. We found correlations in the range
[0.19, 0.51] for the following projects: DNN (r = 0.41, window = 3, lag = 51),
TIMOB (r = 0.20, window = 3, lag = 94), TISTUD (r = 0.19, window =
1, lag = 71), COMPASS (r = 0.23, window = 2, lag = 12), and APSTUD
(r = 0.51, window = 2, lag = 12). XD has a correlation close to zero (r =
0.09, window = 2, lag = 65).

5 Discussion

Regarding the first research question, we observed that the projects exhibit dif-
ferent behaviors in terms of their quality of user stories over time. For example,
project XD shows an upward trend in the change of quality. This indicates that
the quality was increasing rather than decreasing. On the other hand, COMPASS
showed an opposite behavior, where the quality of the user stories decreased as
a trend.

The second research question asked about the relationship between User
Story quality and the project performance, which is measured by the number of
bugs, rework done, and delays. The analysis shows that the projects exhibit an
inverse relationship between the quality of user stories and the studied project
performance variables. If the quality of user stories increases (decreases), the
number of bugs decreases (increase).

16 Ezequiel Scott et al.

Interestingly, our results indicate that the events propagate from one variable
to the other at different times (lags), and the lags seem to depend on the whole
duration of the project. In short duration projects, the lags where smaller than
in long projects. This can be a consequence of the amount of data to analyze
but, surprisingly, strong correlations were found even in shorter projects where
there are considerable less data points.

Regarding bugs, the effect can take 17-30 weeks to propagate from one vari-
able (user story quality) to the other (bug count) in case of long duration projects
whereas it can take 1-13 weeks in the case of medium and short duration ones.
The number of delays can be inversely affected by the user story quality after
7-20 weeks for long projects, 8-11 weeks for medium projects, and 1-3 weeks
for short ones. The occurrence of rework can also be inversely affected by the
user story quality after 18-28, 8-15, and 1-3 weeks for long, medium, and short
projects, respectively. Table 3 summarizes the main findings.

Table 3. Summary of results. The cells show the minimum and maximum lags ex-
pressed in business weeks (5 business days).

Long duration Medium duration Short duration

Variable r lag < 0 lag > 0 lag < 0 lag > 0 lag < 0 lag > 0

Bugs r < 0 [-17.0, -5.8] [17.8, 27.8] [-16.0, -8.0] [2.2, 13.6] [-5.6, -2.6] [0.8, 6.4]
r > 0 [-22.4, -1.0] [4.2, 9.4] [-15.2, -1.2] [3.8, 14.4] [-2.2, -0.2] [2.4, 4.4]

Delays r < 0 [-16.6, -10.0] [7.4, 20.0] [-15.2, -5.6] [8.0, 11.6] [-2.2, -1.2] [0.4, 2.4]
r > 0 [-22.8, -3.6] [10.8, 18.8] [-15.2, -1.2] [4.8, 13.0] [-2.6, 0.0] [2.4, 2.4]

Rework r < 0 [-28.2, -15.8] [18.6, 28.0] [-14.8, -9.6] [8.2, 15.6] [-4.0, -1.2] [1.0, 3.2]
r > 0 [-26.0, -5.4] [20.2, 20.4] [-15.4, -1.2] [0.4, 14.4] [-5.4, -2.2] [1.0, 5.4]

6 Limitations

The current findings are subject to several limitations that must be considered. It
is worth noting that our data-driven approach does not support causal inference
and it is mainly based on the discovering of patterns and correlation analysis.
Controlled experiments are required to gain insights about causality. Further-
more, the data analysis approach required manual interpretation of visualized
results which could have introduced errors. A more systematic approach to in-
terpret the results could improve the accuracy and reliability of the results in
further studies. More specifically, the selection of the window size in the WTLCC
analyses has a strong influence on the observed results. In our case the window
size varied in relation to the overall project duration. Long projects have wide
windows and short projects have short windows. The results might change if, for
example, uniform window sizes across all analyzed projects are chosen.

Analyzing the Quality of User Stories 17

Regarding the generalization of the results, they are limited to the data
sample. A larger data sample could produce different results, although it is
difficult to find open-source projects that use ASD practices and track their
process data using publicly available issue trackers. We mitigated this issue by
analyzing a heterogeneous set of projects with different characteristics.

Missing values are another threat to validity. The dataset required an exten-
sive amount of data cleaning in order to remove the noise that could have led to
misleading conclusions. The projects also show periods of inactivity and we do
not know the reasons behind this. To mitigate the impact of these missing data
points, we removed the periods of inactivity by manual inspection and we use a
linear interpolation method for imputing the remaining missing data points.

Another limitation is introduced by the AQUSA tool. The current develop-
ment state of the tool is not able to assess the semantics behind the user stories
descriptions as it would require expert domain or using advanced artificial intel-
ligence. The AQUSA tool is only able to detect defects related to syntactic and
pragmatic aspects of user stories.

In summary, although it is possible to monitor the quality of user stories by
using the proposed approach, the process itself is complicated since considerable
amount of work has to be done regarding the pre-processing and data cleaning
of the data. The visual inspection of the heatmaps can be also prone to errors.
therefore, it can be said that while it is possible to analyze the quality of user
stories, more convenient solutions should be developed in order to make the
monitoring of user stories simple for development teams.

7 Conclusion

The correlation analysis showed several interesting relationships between the
quality of user stories and the project performance measured by the number of
bugs, rework, and delays. The results show an inverse relationship between the
user story quality and the project performance. When the quality of user stories
decreased (increased), the number of bugs increased (decreased) correspondingly.
This effect propagates from one variable to another at different lag times, and the
lags seem to be related to the whole duration of the project. In particular, long-
duration projects exhibit longer propagation time than short-duration projects.

We believe our results shed light on the benefits of writing high-quality user
stories when managing requirements in agile software development. In particu-
lar, we provide empirical evidence that supports one of the most popular agile
practices and the general agile mentors’ advice of writing good user stories. Fur-
thermore, this paper integrates previous research into an approach that can be
easily extended into a monitoring tool (e.g. a dashboard) that allow developers
and stockholders to visualize the overall quality of the written requirements in
an aggregated way and set quality standards during the software development.

18 Ezequiel Scott et al.

Appendix

During the data cleaning phase, we applied the following steps:

1. Removal of empty rows.
2. Removal of special headings in the description of the user story (e.g., ”h2.

Back story”)
3. Removal of hyperlinks to web sites.
4. Removal of mentions to files with extensions such as ”.jar”.
5. Removal of code examples.
6. Removal of different types of curly brackets combinations.
7. Removal of paths to files.
8. Removal of word whose length is longer than 19 characters. According to [29],

words with more than 19 characters are very rare in English (less than 0.1%).
In our case, this usually happens when the bod y of a user story describe
part of the program code. For example, the string ”TriggerSourceOptions-
Metadata”

9. Removal of consecutive exclamation marks and the text between them. This
notation is commonly used for adding images (e.g., ”!GettingStarted.png!”)

10. Removal of square brackets and everything between them.
11. Removal of non-ASCII characters.
12. Removal of special characters such as ”¡”, ”¿”, ” ”, and ”$”.
13. Removal of different kinds of whitespaces (e.g., tabs, ” ” etc) and re-

placing them with a single whitespace.
14. Removal of duplicated User Stories.
15. Removal of upper outliers (abnormally long User Stories). Upper outliers are

removed based on the description length using Tukey’s fences.
16. Removal of lower outliers (User Stories with less than 3 words). For example,

some User Stories consisted of only the description ”See: http://...”.

Acknowledgment

This work was supported by the Estonian Center of Excellence in ICT research
(EXCITE), ERF project TK148 IT, and by the team grant PRG 887 of the
Estonian Research Council.

References

1. Firesmith, D.: Common requirements problems, their negative consequences, and
the industry best practices to help solve them. Journal of Object Technology 6(1)
(2007) 17–33

2. Wohlin, C., et al.: Engineering and managing software requirements. Springer
Science & Business Media (2005)

3. Cohn, M.: User stories applied: For agile software development. Addison-Wesley
Professional (2004)

Analyzing the Quality of User Stories 19

4. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies.
J. Syst. Softw. 85(6) (2012) 1213–1221

5. Kassab, M.: The changing landscape of requirements engineering practices over
the past decade. In: 2015 IEEE Fifth International Workshop on Empirical Re-
quirements Engineering (EmpiRE), IEEE (2015) 1–8

6. VersionOne, C.: 13th annual state of agile report (2018)
7. Wang, X., Zhao, L., Wang, Y., Sun, J.: The role of requirements engineering

practices in agile development: an empirical study. In: Requirements Engineering.
Springer (2014) 195–209

8. Kassab, M.: An empirical study on the requirements engineering practices for
agile software development. In: 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, IEEE (2014) 254–261

9. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: The use and
effectiveness of user stories in practice. In: Int. working conference on requirements
engineering: Foundation for software quality, Springer (2016) 205–222

10. Wake, B.: Invest in good stories, and smart tasks
11. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: Improving agile

requirements: the quality user story framework and tool. Requirements Engineering
21(3) (2016) 383–403

12. Buglione, L., Abran, A.: Improving the user story agile technique using the invest
criteria. In: 2013 Joint Conference of the 23rd International Workshop on Soft-
ware Measurement and the 8th International Conference on Software Process and
Product Measurement. (2013) 49–53

13. Lai, S.T.: A user story quality measurement model for reducing agile software
development risk. International Journal of Software Engineering and Applications
8 (2017) 75–86

14. de Souza, P.L., do Prado, A.F., de Souza, W.L., dos Santos Forghieri Pereira,
S.M., Pires, L.F.: Improving agile software development with domain ontologies.
In Latifi, S., ed.: Information Technology - New Generations, Cham, Springer In-
ternational Publishing (2018) 267–274

15. Rodŕıguez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A., Germán, D.M.,
Gonzalez-Barahona, J.M.: How bugs are born: a model to identify how bugs are
introduced in software components. Empir Software Eng 25 (2020) 1294–1340

16. Sedano, T., Ralph, P., Péraire, C.: Software development waste. In: Proceedings of
the 39th International Conference on Software Engineering. ICSE ’17, IEEE Press
(2017) 130–140

17. Tamai, T., Kamata, M.I.: Impact of requirements quality on project success or
failure. In Lyytinen, K., Loucopoulos, P., Mylopoulos, J., Robinson, B., eds.: Design
Requirements Engineering: A Ten-Year Perspective, Berlin, Heidelberg, Springer
Berlin Heidelberg (2009) 258–275

18. Jahanshahi, H., Cevik, M., Başar, A.: Predicting the number of reported bugs
in a software repository. In: Advances in Artificial Intelligence, Cham, Springer
International Publishing (2020) 309–320

19. Kai, H., Zhengwei, Q., Bo, L.: Network anomaly detection based on statistical
approach and time series analysis. In: 2009 International Conference on Advanced
Information Networking and Applications Workshops. (2009) 205–211

20. Herraiz, I., Gonzalez-Barahona, J.M., Robles, G.: Forecasting the number of
changes in eclipse using time series analysis. In: Fourth International Workshop
on Mining Software Repositories (MSR’07:ICSE Workshops 2007). (2007) 32–32

20 Ezequiel Scott et al.

21. Choraś, M., Kozik, R., Pawlicki, M., Ho lubowicz, W., Franch, X.: Software de-
velopment metrics prediction using time series methods. In Saeed, K., Chaki,
R., Janev, V., eds.: Computer Information Systems and Industrial Management,
Cham, Springer International Publishing (2019) 311–323

22. Roume, C., Almurad, Z., Scotti, M., Ezzina, S., Blain, H., Delignières, D.: Win-
dowed detrended cross-correlation analysis of synchronization processes. Physica
A: Statistical Mechanics and its Applications 503 (2018) 1131–1150

23. Scott, E., Pfahl, D.: Using developers’ features to estimate story points. In:
Proceedings of the 2018 International Conference on Software and System Process.
(2018) 106–110

24. Scott, E., Charkie, K.N., Pfahl, D.: Productivity, turnover, and team stability of
agile software development teams in open-source projects. In: 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), IEEE
(2020)

25. Porru, S., Murgia, A., Demeyer, S., Marchesi, M., Tonelli, R.: Estimating story
points from issue reports. In: Proc. of the 12th Int. Conf. on Predictive Models
and Data Analytics in Soft. Eng. (2016) 1–10

26. Boker, S.M., Rotondo, J.L., Xu, M., King, K.: Windowed cross-correlation and
peak picking for the analysis of variability in the association between behavioral
time series. Psychological methods 7(3) (2002) 338

27. Jammazi, R., Aloui, C.: Environment degradation, economic growth and energy
consumption nexus: A wavelet-windowed cross correlation approach. Physica A:
Statistical Mechanics and Its Applications 436 (2015) 110–125

28. Cohen, J.: A power primer. Psychological bulletin 112(1) (1992) 155
29. Sigurd, B., Eeg-Olofsson, M., Van Weijer, J.: Word length, sentence length and

frequency–zipf revisited. Studia Linguistica 58(1) (2004) 37–52

	An Empirical Study of User Story Quality and its Impact on Open Source Project Performance
	Ezequiel Scott, Tanel Tõemets, Dietmar Pfahl
	Introduction
	Related Work
	Quality of User Stories
	Empirical Studies on the Impact of Requirements Quality
	Time Series Analysis in Software Engineering
	Summary

	Study Design
	Research Questions
	Initial Dataset
	Data Cleaning
	Measurement
	Quality of User Stories (Q):
	Number of bugs (B):
	Rework (R):
	Delays (D):

	Data Analysis

	Results
	Study Population
	User Stories Quality Monitoring and Evolution Patterns
	User Story Quality and Project Performance
	Bug Count
	Rework Count
	Delay Count

	Discussion
	Limitations
	Conclusion
	References

